【2018北京集训(六)】Lcm】的更多相关文章

Portal --> 出错啦qwq(好吧其实是没有) Description 给定两个正整数\(n,k\),选择一些互不相同的正整数,满足这些数的最小公倍数恰好为\(n\),并且这些数的和为\(k\)的倍数 求选择的方案数对\(232792561\)取模 数据范围:多组数据,组数\(T<=10,n<=10^{18},k<=20\),且\(n\)的所有质因子不大于\(100\) Solution 这题..好神仙啊qwq敲爆脑子都想不出来系列qwq 注意到\(n<=10^{18}…
首先我们来看下此题的模数232792561. 232792561=lcm(1,2,3.......20)+1.这个性质将在求值时用到. 我们将n分解质因数,令$m$为$n$的素因子个数,设n=$\Pi_{j=0}^{m-1} p_j^{b_j}$ ,其中$p_j$是素数且$p_0$至$p_{m-1}$从小到大排列.考虑到$n≤10^{18}$,则$m≤15$. 我们用 $f[i][j]$ 表示当前$n$的因数$x$所表示的状态为$i$,且模$k$为$j$时的方案数. 下面讲下如何用一个已知的因数…
此题niubi! 题目大意:给你一颗n个点的点带权无根树,现在请您进行以下两步操作: 1,选择一个$[0,T]$之间的整数$C$,并令所有的点权$wi$变为$(wi+C)%MOD$ 2,选择若干条点不相交的路径:设选择的条数为$k$,覆盖的点的点权和为$S$,则收益为$\frac{S}{k+1}$ 请您求出收益最大可能为多少. 数据范围:$T,S≤10^5$,$n≤5000$ 我们先不考虑修改点权的过程,只考虑求最大收益应该如何做. 我们显然有一种$O(n^2)$的做法,但是复杂度太高了,加上修…
矩阵快速幂原来还可以这么用?? 你们城里人还真会玩. 我们令$f[i][j][k]$表示总的钱数为i,当前使用的最大面值硬币的面值为$v_j$,最小为$v_k$的方案数量. 不难发现$f[i][j][k]=\sum f[a][j][l]\times f[b][l][k] $其中$l∈[k,j],a+b=i$. 很显然,这个转移过程不就是矩阵乘法的过程吗?? 考虑到$\forall v_i>v_j$,有$gcd(v_i,v_j)=v_j$,则$f[v_i]$可以由$f[v_j]$通过矩阵乘法转移得…
[北京集训D2T3]tvt \(n,q \le 1e9\) 题目分析: 首先需要对两条路径求交,对给出的四个点的6个lca进行分类讨论.易于发现路径的交就是这六个lca里面最深的两个所形成的链. 然后即可再分两种情况进行讨论. 对于同向的路径,我们可以求出到达交的起点的时间差,然后与链上的最长边进行比较,如果大于说明可行. 对于对向的路径,如果能在时间差内走到交集上,同时不是在一个顶点相遇那么一定就是合法情况,否则就是不合法情况.这部分可以用倍增解决. #include <bits/stdc++…
牛客2018国庆集训 DAY1 D Love Live!(01字典树+启发式合并) 题意:给你一颗树,要求找出简单路径上最大权值为1~n每个边权对应的最大异或和 题解: 根据异或的性质我们可以得到 \(sum_{(u, v)}=sum_{(u, 1)} \bigoplus sum_{(v, 1)}\)那么我们可以预处理出所有简单路径上的异或值 对于路径上的最大权值来说,建图后,我们可以将边权进行排序,对于每一个权值为\(w_i(1-n)\)的连通块 现在我们已经得到了当前边权所在的连通块了,所以…
北京集训的题都是好题啊~~(于是我爆0了) 注意到一个重要的性质就是期望是线性的,也就是说每一段的期望步数可以直接加起来,那么dp求出每一段的期望就行了... 设$f_i$表示从$i$出发不回到$i$直接到达终点的概率,显然期望步数就是$\frac{1}{f_i}$: 考虑转移,设下一个事件概率为$p$,则 如果下一个事件是敌人:$f_i=f_{i+1}*p$ 如果下一个事件是旗子: $f_{i}=(1-p)*(1-f_{i+1})*(1+p*(1-f_{i+1})+p^{2}*(1-f_{i+…
题意 你有一个字符串,你需要支持两种操作: 1:在字符串的末尾插入一个字符 \(c\) 2:询问当前字符串的 \([l,r]\) 子串中的不同子串个数 为了加大难度,操作会被加密(强制在线). \(n,m\le 50000\),空间 \(\text{1GB}\) 题解 原题好像是[北京集训 2017 String],题意:给你一个模板串 \(T\),有 \(Q\) 组询问,每组询问给出 \(2\) 个正整数 \(l,r\),请你找出 \(T[l...r]\) 中出现至少 \(2\) 次的最长子串…
Description  Special Judge Hint 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. 题解 题目大意:给定两组点,每组有$n$个点,有若干条跨组的有色无向边.求一种方案,包括若干个不相交的连通块,覆盖全部点,每个连通块满足能一笔画(不经过重复的点)并且相邻两次经过的边颜色不相同(开头和结尾经过的边也不能相同). 是不是有点类似二分图匹配的问题呢?我们还是考虑用最大流来建图. 一笔画的时候,每一个经过的点有且只有一条入边,有且只有一条出边,即…
Solution 这是一道好题. 考虑球体的体积是怎么计算的: 我们令\(f_k(r)\)表示\(x\)维单位球的体积, 则 \[ f_k(1) = \int_{-1}^1 f_{k - 1}(\sqrt{1 - r^2}) dr \] 然而\(f_{k - 1}(\sqrt{1 - x^2})\)并不容易处理, 我们又注意到\(k\)维球体的体积可以表示为\(a \pi r^k\), 因此\(f_k(\sqrt{1 - r^2}) = f_k(1) \times (1 - r)^{\frac…