第15章 大数据与MapReduce 大数据 概述 大数据: 收集到的数据已经远远超出了我们的处理能力. 大数据 场景 假如你为一家网络购物商店工作,很多用户访问该网站,其中有些人会购买商品,有些人则随意浏览后就离开. 对于你来说,可能很想识别那些有购物意愿的用户. 那么问题就来了,数据集可能会非常大,在单机上训练要运行好几天. 接下来:我们讲讲 MapRedece 如何来解决这样的问题 MapRedece Hadoop 概述 Hadoop 是 MapRedece 框架的一个免费开源实现. Ma…
一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,经过两周的努力,已经有啦初步的成果,目前第1章 大数据和Hadoop生态圈小组已经翻译完成,在此对:译者:贾艳成 QQ:496830205 表示感谢. 二.意见征集: 本章节由<Hadoop专业解决方案群:313702010>翻译小组完成,为小组校验稿,已经通过小组内部校验通过,特此面向网络征集意见,如果对本章节内容有任何异议,请在评论中加以说明,说明时,请标明行号,也可以以修订的方式,发送…
第十五章 大数据与Maprudece 一.引言 实际生活中的数据量是非常庞大的,采用单机运行的方式可能需要若干天才能出结果,这显然不符合我们的预期,为了尽快的获得结果,我们将采用分布式的方式,将计算分布到不同的机器上.Mapreduce就是一个典型的分布式框架,Hadoop则是用java编写的一个Mapreduce实现. 分布式和并行的区别在于分布式它将数据分布到不同的机器上,而并行只是将数据分布到同一簇中的不同节点上,它们的区别主要体现在物理载体层面上. 二.Mapreduce简介 Mapre…
本章来简单介绍下 Hadoop MapReduce 中的 Combiner.Combiner 是为了聚合数据而出现的,那为什么要聚合数据呢?因为我们知道 Shuffle 过程是消耗网络IO 和 磁盘IO 比较大的操作,如果我们能减少 Shuffle 过程的数据量,那就可以提升整个 MR 作业的性能.我在<大数据技术 - MapReduce的Shuffle及调优> 一文中写到 Shuffle 中会有两次调用 Combiner 的过程,有兴趣的朋友可以再翻回去看看.接下来我们还是以 WordCou…
学习资料:<Activiti实战> 第十三章 流量数据查询与跟踪 本章讲解运行时与历史数据的查询方法.主要包含三种:标准查询,Native查询,CustomSql查询. 13.1 Query API Activiti的查询API分为: 1 标准查询 以Java对象的方式,创建一个指定类型的Query对象,然后链式编程查询. 缺点:不支持复杂的查询. 2 Nativit查询 采用标准SQL的方式查询,因此支持复杂的查询. 缺点:仅支持部分对象的查询. (1)Query接口与NativeQuery…
6.3 突破传统,4k大屏的沉浸式体验 前言 能够在 4K 的页面上表演,对设计师和前端开发来说,即是机会也是挑战,我们可以有更大的空间设计宏观的场景,炫酷的转场,让观众感受影院式视觉体验,但是,又必须面对因为画布变大带来的性能问题,以及绞尽脑汁实现很多天马行空的的想法.下面是这次双11媒体大屏开发中我们的一些设计和思路. 1. 3D动感跑道 当逍遥子零点倒数5,4,3,2,1,0!激昂音乐奏起,媒体中心大屏幕跳跃出一个动感十足的页面,黄橙橙的 GMV 数字蹭蹭往上长,跳跃的翻牌器下有个不断向前…
Spark支持多种的编程语言 对比scala和Java编程上节课的计数程序.相比之下,scala简洁明了. Hadoop的IO开销大导致了延迟高,也就是说任务和任务之间涉及到I/O操作.前一个任务完成之前没有写入硬盘,下一个任务无法从硬盘当中获取数据,从而导致了这个高延迟. Spark与Hadoop的对比:Spark也是MapReduce,但是它的编程模式比Hadoop的MapReduce更灵活,而且会支持多种数据集的操作.其次呢,它不是从磁盘中读取数据,它是从内存中读取数据.我把结果中间结果写…
大规模的数据计算对于数据挖掘领域当中的作用.两大主要挑战:第一.如何实现分布式的计算 第二.分布式并行编程.Hadoop平台以及Map-reduce的编程方式解决了上面的几个问题.这是谷歌的一个最基本的计算模式,并且对于大规模数据的分析和处理是一种非常有效的方法.以下四个方面了解大数据处理平台Hadoop. 谷歌的解决方案 第一.我们需要计算节点去组成集群.这些点组成集群之后我们是通过网络将这些点连接到一起,从而完成计算和数据的分发. 在这样一种集群式的架构当中,我们是通过switch(交换机)…
入坑<机器学习实战>: 本书的第一个机器学习算法是k-近邻算法(kNN),它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数.最后,选择k个最相似数据中出现次数最多的分类,作为…
1.1 什么大数据 具体来说,大数据技术涉及到数据的创造,存储,获取和分析,大数据的主要特点有下面几个: 数据量大.一个典型的PC机载2000年前后其存储空间可能有10GB,今天facebook一天增加的数据量就将近有500TB:一架波音737的飞机绕美国飞行一周将会产生200TB的数据:移动互联网的发展,智能手机的普及,人们每时每刻都在产生数以万计的数据. 数据变化快.高速的股票交易市场,产生的数据以微秒计算:基础设施系统,实施系统每秒都产生大量变化的日志,每秒都处理大量的并发. 数据多样性.…