LSA和pLSA的比较】的更多相关文章

Comparison   LSA pLSA 1. Theoretical background Linear Algebra Probabilities and Statistics 2. Objective function Frobenius norm Likelihood function 3. Polysemy No Yes 4. Folding-in Straightforward Complicated 1. LSA stems from Linear Algebra as it i…
一. LSA 1. LSA原理 LSA(latent semantic analysis)潜在语义分析,也被称为 LSI(latent semantic index),是 Scott Deerwester, Susan T. Dumais 等人在 1990 年提出来的一种新的索引和检索方法.该方法和传统向量空间模型(vector space model)一样使用向量来表示词(terms)和文档(documents),并通过向量间的关系(如夹角)来判断词及文档间的关系:不同的是,LSA 将词和文档…
现在自然语言处理用深度学习做的比较多,我还没试过用传统的监督学习方法做分类器,比如SVM.Xgboost.随机森林,来训练模型.因此,用Kaggle上经典的电影评论情感分析题,来学习如何用传统机器学习方法解决分类问题. 通过这个情感分析的题目,我会整理做特征工程.参数调优和模型融合的方法,这一系列会有四篇文章.这篇文章整理文本特征工程的内容. 文本的特征工程主要包括数据清洗.特征构造.降维和特征选择等. 首先是数据清洗,比如去停用词.去非字母汉字的特殊字符.大写转小写.去掉html标签等. 然后…

LDA

2 Latent Dirichlet Allocation Introduction LDA是给文本建模的一种方法,它属于生成模型.生成模型是指该模型可以随机生成可观测的数据,LDA可以随机生成一篇由N个主题组成文章.通过对文本的建模,我们可以对文本进行主题分类,判断相似度等.在90年代提出的LSA中,通过对向量空间进行降维,获得文本的潜在语义空间.在LDA中则是通过将文本映射到主题空间,即认为一个文章有若干主题随机组成,从而获得文本间的关系.LDA模型有一个前提:bag of word.意思就…
Bag-of-Words (BoW) 模型是NLP和IR领域中的一个基本假设.在这个模型中,一个文档(document)被表示为一组单词(word/term)的无序组合,而忽略了语法或者词序的部分.BOW在传统NLP领域取得了巨大的成功,在计算机视觉领域(Computer Vision)也开始崭露头角,但在实际应用过程中,它却有一些不可避免的缺陷,比如: 稀疏性(Sparseness): 对于大词典,尤其是包括了生僻字的词典,文档稀疏性不可避免: 多义词(Polysem): 一词多义在文档中是常…
自然语言处理之LSA LSA(Latent Semantic Analysis), 潜在语义分析.试图利用文档中隐藏的潜在的概念来进行文档分析与检索,能够达到比直接的关键词匹配获得更好的效果. LSA的核心思想 假设有 nn 篇文档,这些文档中的单词总数为 mm (可以先进行分词.去词根.去停止词操作),我们可以用一个 m∗nm∗n的矩阵 XX 来表示这些文档,这个矩阵的每个元素 XijXij 表示第 ii 个单词在第 jj 篇文档中出现的次数(也可用tf-idf值).下文例子中得到的矩阵见下图…
1 LSA Introduction LSA(latent semantic analysis)潜在语义分析,也被称为LSI(latent semantic index),是Scott Deerwester, Susan T. Dumais等人在1990年提出来的一种新的索引和检索方法.该方法和传统向量空间模型(vector space model)一样使用向量来表示词(terms)和文档(documents),并通过向量间的关系(如夹角)来判断词及文档间的关系:而不同的是,LSA将词和文档映射…
LSA(Latent semantic analysis,隐性语义分析).pLSA(Probabilistic latent semantic analysis,概率隐性语义分析)和 LDA(Latent Dirichlet allocation,隐狄利克雷分配)这三种模型都可以归类到话题模型(Topic model,或称为主题模型)中.相对于比较简单的向量空间模型,主题模型通过引入主题这个概念,更进一步地对文本进行语义层面上的理解. LSA 模型就是对词-文档共现矩阵进行SVD,从而得到词和文…
本文简述了以下内容: 什么是词表示,什么是表示学习,什么是分布式表示 one-hot representation与distributed representation(分布式表示) 基于distributional hypothesis的词表示模型 (一)syntagmatic models(combinatorial relations):LSA(基于矩阵) (二)paradigmatic models(substitutional relations):GloVe(基于矩阵).NPLM(基…
[Topic Model]主题模型之概率潜在语义分析(Probabilistic Latent Semantic Analysis) 感觉LDA在实践中的优势其实不大,学好pLSA才是重点 阅读笔记 PLSI 2008年的时候,pLSA已经被新兴的LDA掩盖了. LDA是pLSA的generalization:LDA的hyperparameter设为特定值的时候,就specialize成pLSA了. 从工程应用价值的角度看,这个数学方法的generalization,允许我们用一个训练好的模型解…