理解 Bias 与 Variance 之间的权衡】的更多相关文章

有监督学习中,预测误差的来源主要有两部分,分别为 bias  与 variance,模型的性能取决于 bias 与 variance 的 tradeoff ,理解 bias 与 variance 有助于我们诊断模型的错误,避免 over-fitting 或者 under-fitting. 在统计与机器学习领域权衡 Bias  与 Variance 是一项重要的任务,因为他可以使得用有限训练数据训练得到的模型更好的范化到更多的数据集上,监督学习中的误差来源主要为 Bias 与 Variance,接…
有监督学习中,预测误差的来源主要有两部分,分别为 bias 与 variance,模型的性能取决于 bias 与 variance 的 tradeoff ,理解 bias 与 variance 有助于我们诊断模型的错误,避免 over-fitting 或者 under-fitting. 原文在这里: https://www.cnblogs.com/ooon/p/5711516.html 博主大概翻译自英文: http://scott.fortmann-roe.com/docs/BiasVaria…
Error = Bias^2 + Variance+Noise 误差的原因: 1.Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,即算法本身的拟合能力. 2.Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性.反应预测的波动情况. 3.噪声. 为了帮助理解,搬运知乎上的图.bias表示偏离中心的程度,variance表示结果的波动程度.在实际的预测当中,我们希望模型的数据不但是low bias,而且还是low variance,但是两者之…
1.Bias vs. Variance是什么概念? 图形上的理解:https://www.zhihu.com/question/27068705          http://blog.csdn.net/huruzun/article/details/41457433 直观上的定义: Error due to Bias:真实值与预测值之间的差异.(low bias:打的准) Error due to Variance : 在给定模型数据上预测的变化性,你可以重复整个模型构建过程很多次, var…
校招在即,准备准备一些面试可能会用到的东西吧.希望这次面试不会被挂. 基本概念 说到机器学习模型的误差,主要就是bias和variance. Bias:如果一个模型的训练错误大,然后验证错误和训练错误都很大,那么这个模型就是高bias.可能是因为欠拟合,也可能是因为模型是弱分类器. Variance:模型的训练错误小,但是验证错误远大于训练错误,那么这个模型就是高Variance,或者说它是过拟合. 这个图中,左上角是低偏差低方差的,可以看到所有的预测值,都会落在靶心,完美模型: 右上角是高偏差…
偏置和方差 参考资料:http://scott.fortmann-roe.com/docs/BiasVariance.html http://www.cnblogs.com/kemaswill/ Bias-variance 分解是机器学习中一种重要的分析技术.给定学习目标和训练集规模,它可以把一种学习算法的期望误差分解为三个非负项的和,即本真噪音.bias和 variance. 本真噪音是任何学习算法在该学习目标上的期望误差的下界:( 任何方法都克服不了的误差) bias 度量了某种学习算法的平…
关于偏差.方差以及学习曲线为代表的诊断法: 在评估假设函数时,我们习惯将整个样本按照6:2:2的比例分割:60%训练集training set.20%交叉验证集cross validation set.20%测试集test set,分别用于拟合假设函数.模型选择和预测. 模型选择的方法为: 1. 使用训练集训练出 10 个模型 2. 用 10 个模型分别对交叉验证集计算得出交叉验证误差(代价函数的值) 3. 选取代价函数值最小的模型 4. 用步骤 3 中选出的模型对测试集计算得出推广误差(代价函…
以下内容参考 cousera 吴恩达 机器学习课程 1. Bias 和 Variance 的定义 Bias and Variance 对于改进算法具有很大的帮助作用,在bias和Variance的指引之下,我们可以有方向性的对算法进行改进. 模型较简单时,可能导致Bias,相反模型较为复杂的时候,容易导致high Variance. 如下图所示,随着模型复杂度的增加,训练数据集上的误差将会减小,而交叉验证集上的误差是先减小后增大.所以根据在训练集和交叉验证集上的误差大小就可以判断模型是除了bia…
假设我们已经训练得到 一个模型,那么我们怎么直观判断这个 模型的 bias 和 variance? 直观方法: 如果模型的 训练错误 比较大,并且 验证错误 和 训练错误 差不多一样,都比较大,我们就认为这个模型 是 高bias 的,或者说 它是 underfit . 如果模型的 训练错误 比较小,但是 验证错误比较大 远大于 训练错误,我们就认为这个 模型 是 高variance,或者说它是 overfit. 直观解释: 如果一个模型是高 bias 的(underfitting),那么可以认为…
深入理解 sudo 与 su 之间的区别 两个命令的最大区别是: sudo 命令需要输入当前用户的密码,su 命令需要输入 root 用户的密码.另外一个区别是其默认行为.sudo 命令只允许使用提升的权限运行单个命令,而 su 命令会启动一个新的 shell,同时允许使用 root 权限运行尽可能多的命令,直到明确退出登录. Linux su 命令 su 命令的主要作用是让你可以在已登录的会话中切换到另外一个用户.换句话说,这个工具可以让你在不登出当前用户的情况下登录为另外一个用户. su 命…