Mongodb添加地理位置索引】的更多相关文章

1.同步站点信息到mongo中(支持mysql.sqlserver数据同步) 2.在Collections文件夹下所在文档右键,在菜单中选择Add Index, 3.然后进行数据查询{ "mloc" : { $near : [23.1455757718471,113.529789947662], $maxDistance : 1000} } 解析:         mloc为文档字段,是一个集合.坐标点经纬度需已集合数组形式存储.         $maxDistance为搜索距离.…
mongoDB支持二维空间索引,使用空间索引,mongoDB支持一种特殊查询,如某地图网站上可以查找离你最近的咖啡厅,银行等信息.这个使用mongoDB的空间索引结合特殊的查询方法很容易实现.前提条件:建立空间索引的key可以使用array或内嵌文档存储,但是前两个elements必须存储固定的一对空间位置数值.如 { loc : [ 50 , 30 ] }{ loc : { x : 50 , y : 30 } }{ loc : { foo : 50 , y : 30 } }{ loc : {…
地址位置索引:将一些点的位置存储在mongodb中,创建索引后,可以按照位置来查找其他点 子分类: .2d索引:平面地理位置索引,用于存储和查找平面上的点. .2dsphere索引:球面地理位置索引,用于存储和查找球面上的点. 查找方式: .查找距离某个点一定距离内的点. .查找包含在某区域内的点. 比如当前打车软件比较火,当确定某个乘客的点的时候,服务器需要确定某个范围内的出租车,接收乘客的搭车请求,这个时候就可以使用mongodb的地理位置索引去完成这样的需求 比如在使用团购网站时,距离我们…
地理位置索引支持是MongoDB的一大亮点,这也是全球最流行的LBS服务foursquare 选择MongoDB的原因之一.我们知道,通常的数据库索引结构是B+ Tree,如何将地理位置转化为可建立B+Tree的形式,下文将为你描述. 首先假设我们将需要索引的整个地图分成16×16的方格,如下图(左下角为坐标0,0 右上角为坐标16,16): 单纯的[x,y]的数据是无法建立索引的,所以MongoDB在建立索引的时候,会根据相应字段的坐标计算一个可以用来做索引的hash值,这个值叫做geohas…
原文链接:图解 MongoDB 地理位置索引的实现原理 地理位置索引支持是MongoDB的一大亮点,这也是全球最流行的LBS服务foursquare 选择MongoDB的原因之一.我们知道,通常的数据库索引结构是B+ Tree,如何将地理位置转化为可建立B+Tree的形式,下文将为你描述. 首先假设我们将需要索引的整个地图分成16×16的方格,如下图(左下角为坐标0,0 右上角为坐标16,16): 单纯的[x,y]的数据是无法建立索引的,所以MongoDB在建立索引的时候,会根据相应字段的坐标计…
MongoDB数据模型和索引学习总结 1. MongoDB数据模型: MongoDB数据存储结构: MongoDB针对文档(大文件採用GridFS协议)採用BSON(binary json,採用二进制编码)数据格式来存储和交换数据.Bson吸收了JSON schema-less的特点,存储结构松散,不须要像RDB(关系数据)那样事先定义数据存储的元数据结构.另外添加了多种数据类型的支持和优化,使读写更加高效. (1) BSON 支持的数据类型: Double.String.Object.Arra…
回到目录 索引这个东西大家不会陌生,只要接触到稍微大一点的数据,都会用到这东西,它可以提升查询的速度,相当代价就是占用了更多的存储空间,这也是正常的,符合“能量守恒定理”,哈哈!今天说的是MongoDB里的索引,在我进行对500万数据进行查询测试时,发现如果你的查询字段不加索引,那是相当恐怖的,一个简单的查询(单字段)要耗时30多秒,这种操作,基本可以认为服务器挂了,哈哈!当为字段加了索引之后,查询速度为ms级,100毫秒以内的速度真是把经兴奋坏了,呵呵! 建立索引 db.tableName.e…
索引可以用来优化查询,而且在某些特定类型的查询中,索引是必不可少的.为集合选择合适的索引是提高性能的关键. 先来mock数据 for (i = 0; i < 1000000; i++) { db.users.insert({ "i": i, "username": "user" + i, "age": Math.floor(Math.random() * 120), "created": new Da…
索引 索引能够提升查询的效率.没有索引,MongoDB必须扫描集合中的所有文档,才能找到匹配查询语句的文档. 索引是一种特殊的数据结构,将一小块数据集保存为容易遍历的形式.索引能够存储某种特殊字段或字段集的值,并按照索引指定的方式将字段值进行排序. 然而使用索引也是有代价的:对于添加的每一个索引,每次的插入.更新.删除都将会消耗更多的时间.这是因为当数据发生变动时,数据库不仅要更新文档,还要更新集合上的所有索引. MongoDB限制每个集合上最多只能由64个索引. 使用索引键对文档进行排序可以提…
准备工作: 先插入100万条数据 for(i=0;i<=1000000;i++){ db.users.insert({ "i":i, "username":"user"+i, "age":Math.floor(Math.random()*120), "created":new Date() }) } 1. 创建索引: 数据量越大创建索引时间越长 db.users.ensureIndex({"…