目录 概 主要内容 Wu Z., Xiong Y., Yu S. & Lin D. Unsupervised Feature Learning via Non-Parametric Instance Discrimination. arXiv preprint arXiv 1805.01978 概 这篇文章也是最近很虎的contrastive learning的经典之作, 其用于下游任务的处理虽没现在的简单粗暴, 但效果依然很好. 主要内容 因为作者实际上是从一个无监督的角度去考虑的, 其出发点…
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning b…
Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition Peng Yin, Lingyun Xu, Zhe Liu, Lu Li, Hadi Salman, Yuqing He Abstract— Place recognition is one of the major challenges for the LiDAR-based effective localization and mappin…
http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning by A…
from:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning…
UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套教程,内容深入浅出,有很强的实用性,学习起来,让人有种酣畅淋漓的感觉.邓侃博士于今年 2 月 20 日起,在新浪微博上召集志愿者对该教程进行翻译,并于 4 月 8 日全部完成,非常感谢所有参与者的辛勤劳动.本系列文章主要是对这套教程资料的整理,部分内容加入了自己的一些理解和注释. 第一篇  稀疏自编…
7.27 暑假开始后,稍有时间,“搞完”金融项目,便开始跑跑 Deep Learning的程序 Hinton 在Nature上文章的代码 跑了3天 也没跑完 后来Debug 把batch 从200改到20 勉强跑出结果 后来开始看 文章等  感觉晕晕乎乎 又翻到:Deep Learning Tutorials 装Theano等,但是python 代码 Debug真是好生恶心 再后来翻到 UFLDL,看着有Exercise 便做了起来. 用了5天刷了9个Exercises. 大概年后吧,在微博上看…
Joint Detection and Identification Feature Learning for Person Search 2018-06-02 本文的贡献主要体现在: 提出一种联合的 检测 (person detection) 和 行人匹配(person matching) 的网络结构: 提出一种 Online Instance Matching loss function 以更有效的进行特征的学习: 提出一个大型的 person search 的 benchmark.…
UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2016  摘要:近年来 CNN 在监督学习领域的巨大成功 和 无监督学习领域的无人问津形成了鲜明的对比,本文旨在链接上这两者之间的缺口.提出了一种 deep convolutional generative adversarial networks (DCGANs),that have certai…
ECCV-2010 Tutorial: Feature Learning for Image Classification Organizers Kai Yu (NEC Laboratories America, kyu@sv.nec-labs.com), Andrew Ng (Stanford University, ang@cs.stanford.edu) Place & Time: Creta Maris Hotel, Crete, Greece, 9:00 – 13:00, Septem…