卢卡斯(lucas)定理】的更多相关文章

Lucas定理 对于C(m,n)%P(P是质数)这样的问题,可以通过预处理阶乘和阶乘的逆元,来快速计算.但是当m,n大于P时,就不能保证m,n与P互质了,但不互质的情况下,乘法逆元不存在,此时就需要卢卡斯定理来减小m,n的规模,此处证明略去,给出公式: C(n,m)%P=C(n/P,m/P)*C(n%P,m%P)%P ll Lucas(ll n,ll m) { if (m==0) return 1; return C(n%mod,m%mod)*Lucas(n/mod,m/mod)%mod; }…
Lucas(卢卡斯)定理 定义 若 \(p\) 为质数,且\(a\ge b\ge1\),则有: \[C_{a}^{b}\equiv C_{a/p}^{b/p}\cdot C_{a (mod\,p)}^{b(mod\,p)} \] 拆分a与b 按照 \(p\) 进制拆分 \(a\) 与 \(b\) ,设 \(a\) 与 \(b\) 是 \(k\) 位,不足用 \(0\) 补足. \[\left\{\begin{aligned} a&=a_0p^{0}+a_1p^{1}+\cdots+a_{k-1}…
[模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\),质数 \(p\),有: \(C_m^n\equiv \prod\limits_{i=0}^kC_{m_i}^{n^i}(\bmod\ p)\) 其中 \(m=m_kp^k+...+m_1p+m_0\),\(n=n_kp^k+...+n_1p+n_0\).(其实就是 \(n,m\) 的 \(p\) 进…
方便复制 快速乘/幂 时间复杂度 \(O(\log n)\). ll nmod; //快速乘 ll qmul(ll a,ll b){ ll l=a*(b>>hb)%nmod*(1ll<<hb)%nmod; ll r=a*(b&((1<<hb)-1))%nmod; return (l+r)%nmod; } //快速幂 ll qpow(ll a,ll b){ ll res=1; while(b){ if(b&1)res=res*a%nmod; a=a*a%n…
可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互质就有逆元了. 所以可以考虑把分子分母不互质的数单独提出来处理. 然鹅P太一般,直接处理要考虑的东西太多. 我们不妨令$p=p_1^{q_1}*p_2^{q_2}*...*p_k^{q_k}$ 对每一个$p_i^{q_i}$分别求解(不妨叫这个数为$pk$)(这样会容易很多) 即求ai满足:$\fr…
引入: 组合数C(m,n)表示在m个不同的元素中取出n个元素(不要求有序),产生的方案数.定义式:C(m,n)=m!/(n!*(m-n)!)(并不会使用LaTex QAQ). 根据题目中对组合数的需要,有不同的计算方法. (1)在模k的意义下求出C(i,j)(1≤j≤i≤n)共n2 (数量级)个组合数: 运用一个数学上的组合恒等式(OI中称之为杨辉三角):C(m,n)=C(m-1,n-1)+C(m-1,n). 证明: 1.直接将组合数化为定义式暴力通分再合并.过程略. 2.运用组合数的含义:设m…
卢卡斯定理是一个与组合数有关的数论定理,在算法竞赛中用于求组合数对某质数的模. 第一部分是博主的个人理解,第二部分为 Pecco 学长的介绍 第一部分 一般情况下,我们计算大组合数取模问题是用递推公式进行计算的: \[C_n^m=(C_{n-1}^m+C_{n-1}^{m-1}) mod\ p \] 其中p相对较小的素数.但是当n和m过大时,计算的耗费就急剧增加\(O(mn)\),在实践中不适用.当这时候就需要Lucas定理进行快速运算: \[C_n^m=\prod_{i=0}^{k}C_{n_…
Lucas 定理是用来求 \(C^n_m\bmod p\) 的. 定理 \[C^n_m\equiv C^{n\bmod p}_{m\bmod p}\cdot C^{\lfloor n/p\rfloor}_{\lfloor m/p\rfloor}\pmod p \] 证明略 应用 开头不就说了是求组合数的嘛awa 因为卢卡斯定理可以把一个巨大的组合数给拆掉,所以利用这个性质就能够求出 \(C_m^n \bmod p\),也就是说: \[C_m^n\equiv C_{m_0}^{n_0}\cdot…
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int jc[100003]; int p; int ipow(int x, int b) { ll t = 1, w = x;…
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds memory limit per test 256 megabytes input standard input output standard output Devu wants to decorate his garden with flowers. He has purchased n boxes…