一.Training of a Single-Layer Neural Network 1 Delta Rule Consider a single-layer neural network, as shown in Figure 2-11. In the figure, d i is the correct output of the output node i. Long story short, the delta rule adjusts the weight as the follow…
1.Non-linear Hypotheses 2.Neurons and the Brain 从某种意义上来说,如果我们能找出大脑的学习算法,然后在计算机上执行大脑学习算法或与之相似的算法,也许这将是我们向人工智能迈进做出的最好的尝试.人工智能的梦想就是:有一天能制造出真正的智能机器. 3.Model Representation I 第一层成为输入层(Input Layer),最后一 层称为输出层(Output Layer),中间一层成为隐藏层(Hidden Layers).我们为每一层都增…
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了两个星期来介绍,可见Neural Networks内容之多.言归正传,通过之前的学习我们知道,使用非线性的多项式能够帮助我们建立更好的分类模型.但当遇特征非常多的时候,需要训练的参数太多,使得训练非常复杂,使得逻辑回归有心无力. 例如我们有100个特征,如果用这100个特征来构建一个非线性的多项式模…
Neural networks is a model inspired by how the brain works. It is widely used today in many applications: when your phone interprets(解释口译) and understand your voice commands, it is likely that a neural network is helping to understand your speech; wh…
Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ICML 2016 的:http://jmlr.org/proceedings/papers/v48/niepert16.pdf 上图展示了传统 CNN 在 image 上进行卷积操作的工作流程.(a)就是通过滑动窗口的形式,利用3*3 的卷积核在 image 上进行滑动,来感知以某一个像素点为中心…
Machine Learning:Neural Network---Representation 1.Non-Linear Classification 假设还採取简单的线性分类手段.那么会面临着过拟合以及效率低下的问题(如图所看到的),然而neural network则能够非常好的解决非线性分类问题. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvY3N0b3Bjb2Rlcg==/font/5a6L5L2T/fontsize/400/fill/I0J…
原文 http://blog.csdn.net/abcjennifer/article/details/7749309 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
I am using pybrain on my Linuxmint 13 x86_64 PC. As what it is described: PyBrain is a modular Machine Learning Library for Python. Its goal is to offer flexible, easy-to-use yet still powerful algorithms for Machine Learning Tasks and a variety of p…
整理自Andrew Ng的machine learning课程week 4. 目录: 为什么要用神经网络 神经网络的模型表示 1 神经网络的模型表示 2 实例1 实例2 多分类问题 1.为什么要用神经网络 当我们有大量的features时:如$x_1, x_2,x_3.......x_{100}$ 假设我们现在使用一个非线性的模型,多项式最高次为2次,那么对于非线性分类问题而言,如果使用逻辑回归的话: $g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1…
整理自Andrew Ng的machine learning 课程 week5. 目录: Neural network and classification Cost function Backpropagation (to minimize cost function) Backpropagation in practice Gradient checking Random initialization Assure structure and Train a neural network 前提…