pOJ-1061 exgcd求同余方程组】的更多相关文章

链接 就是求(m-n)*a+b*l=y-x, 类似于求解a*x+b*y=c,r=gcd(a,b),当c%r==0时有解,用exgcd求出a*x+b*y=gcd(a,b)的解,然后x*c/gcd(a,b)就是其中一个解,最后求最小正整数解,就是(x%b+b)%b,要求y的话,对应求解即可 #include<map> #include<set> #include<list> #include<cmath> #include<queue> #inclu…
设 ans 为满足前 n - 1个同余方程的解,lcm是前n - 1个同余方程模的最小公倍数,求前n个同余方程组的解的过程如下: ①设lcm * x + ans为前n个同余方程组的解,lcm * x + ans一定能满足前n - 1个同余方程: ②第 n 个同余方程可以转化为a[n] * y + b; 合并①②得:lcm * x + ans = a[n] * y + b; => lcm * x - a[n] * y = b - ans(可以用拓展欧几里得求解x和y) 但是拓展欧几里得要求取余的数…
青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 104278   Accepted: 20356 Description 两 只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它 们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去…
怎样求同余方程组?如: \[\begin{cases} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ \cdots \\ x \equiv a_n \pmod {m_n} \end{cases}\] 不保证 \(m\) 两两互素? 两两合并! 比方说 \[\begin{cases} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ \end{cases}\] 就是 \[…
http://poj.org/problem?id=2891 题意:与中国剩余定理不同,p%ai=bi,此处的ai(i=1 2 3 ……)是不一定互质的,所以要用到的是同余方程组,在网上看到有人称为拓展中国剩余定理. 具体讲解可以看我昨天的博文:http://www.cnblogs.com/KonjakJuruo/p/5176417.html //poj2891 #include<cstdio> #include<cstdlib> #include<cstring> #…
欧几里德的是来求最大公约数的,扩展欧几里德,基于欧几里德实现了一种扩展,是用来在已知a, b求解一组x,y使得ax+by = Gcd(a, b) =d(解一定存在,根据数论中的相关定理,证明是用裴蜀定理),关于欧几里德的证明请看上篇. 基本算法:基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by. 证明:设a>b; 1. 显然当b=0,gcd(a, b) = a;此时x=1, y=0;这个就是递…
POJ.1061 青蛙的约会 (拓展欧几里得) 题意分析 我们设两只小青蛙每只都跳了X次,由于他们相遇,可以得出他们同余,则有: 代码总览 #include <iostream> #include <cstdio> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; void exgcd(ll a, ll b, ll& d, ll&…
// poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; ll gcd(ll a,ll b){…
POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能…
同余方程组 例题1:pku2891Strange Way to Express Integers 中国剩余定理求的同余方程组mod 的数是两两互素的.然而本题(一般情况,也包括两两互素的情况,所以中国剩余定理成为了“时代的眼泪”)mod的数可能不是互素,所以要转换一下再求. P=b1(mod a1);  P / a1 ==?~~~~b1 P =b2(mod a2); P =b3(mod a3); …… P =bn(mod an); a1~an,b1~bn是给出来的. 解: 第一条:a1*x+b1…