大数据技术之Kafka】的更多相关文章

Kafka概述 1.1 消息队列     (1)点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除) 点对点模型通常是一个基于拉取或者轮询的消息传送模型,这种模型从队列中请求信息,而不是将消息推送到客户端.这个模型的特点是发送到队列的消息被一个且只有一个接收者接收处理,即使有多个消息监听者也是如此. (2)发布/订阅模式(一对多,数据生产后,推送给所有订阅者) 发布订阅模型则是一个基于推送的消息传送模型.发布订阅模型可以有多种不同的订阅者,临时订阅者只在主动监听主题时才接收消息,而持久订…
除Hadoop外的9个大数据技术: 1.Apache Flink 2.Apache Samza 3.Google Cloud Data Flow 4.StreamSets 5.Tensor Flow 6.Apache NiFi 7.Druid 8.LinkedIn WhereHows 9.Microsoft Cognitive Services Hadoop是大数据领域最流行的技术,但并非唯一.还有很多其他技术可用于解决大数据问题.除了Apache Hadoop外,另外9个大数据技术也是必须要了…
[摘要] 知乎上一篇很不错的科普文章,介绍大数据技术生态圈(Hadoop.Hive.Spark )的关系. 链接地址:https://www.zhihu.com/question/27974418 [问题] 如何用形象的比喻描述大数据的技术生态?Hadoop.Hive.Spark 之间是什么关系? [答案1] 学习很重要的是能将纷繁复杂的信息进行归类和抽象. 对应到大数据技术体系,虽然各种技术百花齐放,层出不穷,但大数据技术本质上无非解决4个核心问题. 1.存储,海量的数据怎样有效的存储?主要包…
本篇文章内容来自2016年TOP100summitWalmartLabs实验室广告平台首席工程师.架构师粟迪夫的案例分享. 编辑:Cynthia 粟迪夫:WalmartLabs实验室广告平台首席工程师.架构师 在大数据平台架构设计.消息中间件.分布式系统等领域有丰富经验. 作为技术负责人,帮助多家企业搭建了大数据平台和分布式系统. 目前主导WMX大数据平台.广告效益分析系统和实时数据管道的开发. 导读:作为世界上最大的商品零售商,沃尔玛每天都投放大量的广告.产生大量的商品交易,生成大量数据,需要…
摘要: 本论坛第一次聚集阿里Hadoop.Spark.Hbase.Jtorm各领域的技术专家,讲述Hadoop生态的过去现在未来及阿里在Hadoop大生态领域的实践与探索. 开源大数据技术专场下午场在阿里技术专家封神的主持下开始,参与分享的嘉宾有Spark Commiter.来自Databriks的范文臣,HDFS committer.Intel 研发经理郑锴,逸晗网络科技大数据平台负责人杨智,Intel技术专家毛玮,以及阿里云技术专家木艮.   Databricks范文臣:Deep Dive…
我秀中国物联网地图服务平台目前接入的监控车辆近百万辆,每天采集GPS数据7亿多条,产生日志文件70GB,使用传统的数据处理方式非常耗时. 比如,仅仅对GPS做一些简单的统计分析,程序就需要几个小时才能跑完一天的数据,完全达不到实时分析的要求,更无法对数据进行一些深层次的挖掘. 另外历史数据的存储也是一个亟待解决的问题,目前大多采用的方式是将日志文件进行压缩后上传到服务器上进行存储. 这种方式既原始又不可靠,一是需要作业员每天定时手动上传数据,操作不方便:二是一旦存储数据的服务器出现问题,可能会造…
1 大数据概述 大数据特性:4v volume velocity variety value 即大量化.快速化.多样化.价值密度低 数据量大:大数据摩尔定律 快速化:从数据的生成到消耗,时间窗口小,可用于生成决策的时间非常少:1秒定律,这和传统的数据挖掘技术有着本质区别(谷歌的dremel可以在1秒内调动上千台服务器处理PB级数据) 价值密度低,商业价值高 大数据影响: 对科学研究影响:出现科学研究第四方式数据(前三个分别是实验.理论.计算) 对思维方式影响:全样而非抽样.效率而非准确.相关而非…
摘要:距离上一次MaxCompute新功能的线上发布已经过去了大约一个季度的时间,而在这一段时间里,MaxCompute不断地在增加新的功能和特性,比如参数化视图.UDF支持动态参数.支持分区裁剪.生成建表DDL语句功能等功能都已经得到了广大开发者的广泛使用.那么,近期MaxCompute究竟还有哪些新特性呢?本文就为大家揭晓答案. 以下内容根据视频及PPT整理而成. MaxCompute与阿里云大数据产品解决方案 在介绍MaxCompute新功能前,我们先快速对阿里云的大数据产品解决方案进行介…
  第1章 大数据概论 1.1 大数据概念 大数据概念如图2-1 所示. 图2-1 大数据概念 1.2 大数据特点(4V) 大数据特点如图2-2,2-3,2-4,2-5所示 图2-2 大数据特点之大量 图2-3 大数据特点之高速 图2-4 大数据特点之多样 图2-5 大数据特点之低价值密度 1.3 大数据应用场景 大数据应用场景如图2-6,2-7,2-8,2-9,2-10,2-11所示 图2-6 大数据应用场景之物流仓储 图2-7 大数据应用场景之零售 图2-8 大数据应用场景之旅游 图2-9…
2013年12月5日-6日参加了为期两天的2013中国大数据技术大会(Big Data Technology Conference, BDTC2013),本期会议主题是:“应用驱动的架构与技术 ”.大数据概念最近真是火得不行,从大会多达7个的“大数据架构与系统”.“大数据技术”.“大数据应用”.“大数据研究与发展”.“大数据基准测试”“智能交通与大数据”以及“传统行业如何驾驭大数据”主题论坛,再到现场爆棚的人群,可见大家拥抱大数据的高涨热情. 在9月份读完了一本<大数据时代>,后面又听大学老师…