[MNIST数据集]输入图像的预处理】的更多相关文章

因为MNIST数据是28*28的黑底白字图像,而且输入时要将其拉直,也就是可以看成1*784的二维张量(张量的值在0~1之间),所以我们要对图片进行预处理操作,是图片能被网络识别. 以下是代码部分 import tensorflow as tf import numpy as np from PIL import Image import backward as bw import forward as fw def restore(testPicArr): with tf.Graph().as…
几种常见的优化函数比较:https://blog.csdn.net/w113691/article/details/82631097 ''' 基于Adam识别MNIST数据集 ''' import torch import torchvision import torchvision.transforms as transform import torch.nn from torch.autograd import Variable ''' 神经网络层级结构: 卷积层Conv1,Conv2()…
下面是TensorFlow可视化MNIST数据集识别程序,可视化内容是,TensorFlow计算图,表(loss, 直方图, 标准差(stddev)) # -*- coding: utf-8 -*- import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.contrib.tensorboard.plugins import projector old_v…
基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训练,在MNIST数据集中每张图像的分辨率为28*28,即784维,对应于上图中的x; 而输出为数字类别,即0~9,因此上图中的y的维度维10.因此权重w的维度为[784, 10],wi,j代表第j维的特征对应的第i类的权重值,主要是为了矩阵相乘时计算的方便,具体见下面代码. 训练过程 1.训练过程中…
简单的训练MNIST数据集 (0-9的数字图片) 详细地址(包括下载地址):http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import input_data # 需要下载数据集(包括了input_data)# 加载数据集 mnist = input_data.read_data_sets(…
一. Tensorflow环境的安装 这里我们只讲CPU版本,使用 Anaconda 进行安装 a.首先我们要安装 Anaconda 链接:https://pan.baidu.com/s/1AxdGi93oN9kXCLdyxOMnRA 密码:79ig 过程如下: 第一步:点击next 第二步:I Agree 第三步:Just ME 第四步:自己选择一个恰当位置放它就好 第五步:建议只选择第二个 第六步:就直接install啦啦啦啦,然后你就可以上手万能库了 b.找到Anaconda prompt…
初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构建CNN[待学习] 全连接+各种优化[待学习] BN层[待学习] 先解释以下MNIST数据集,训练数据集有55,000 条,即X为55,000 * 784的矩阵,那么Y为55,000 * 10的矩阵,每个图片是28像素*28像素,带有标签,Y为该图片的真实数字,即标签,每个图片10个数字,1所在位置…
首先链接一篇大牛的Theano文档翻译:http://www.cnblogs.com/xueliangliu/archive/2013/04/03/2997437.html 里面有mnist.pkl.gz 手动下载地址(因为代码里也有自动下载方法) 那么我不是做图像处理的,所以对图像的存储格式没有什么概念,我要以其他方式输入进theano程序中怎么办呢? 于是就得分析它的存储格式.代码(logistic_sgd.py,line 195)注释中说的已经很清楚了: #train_set, valid…
原帖地址:https://www.jiqizhixin.com/articles/2018-04-03-5 K 近邻算法,简称 K-NN.在如今深度学习盛行的时代,这个经典的机器学习算法经常被轻视.本篇教程将带你使用 Scikit-Learn 构建 K 近邻算法,并应用于 MNIST 数据集.然后,作者将带你构建自己的 K-NN 算法,开发出比 Scikit-Learn K-NN 更准更快的算法. 1. K 近邻分类模型 K 近邻算法是一种容易实现的监督机器学习算法,并且其分类性能的鲁棒性还不错…
这次我们将建立一个卷积神经网络,它可以把MNIST手写字符的识别准确率提升到99%,读者可能需要一些卷积神经网络的基础知识才能更好的理解本节的内容. 程序的开头是导入TensorFlow: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data 接下来载入MNIST数据集,并建立占位符.占位符x的含义为训练图像,y_为对应训练图像的标签. # 读入数据 mnist = input_dat…