二值化神经网络(BNN)基础学习(一)】的更多相关文章

目录 1.简介 2.优点 3.基本原理 3.1 权重和激活值二值化[3] 3.2 乘法优化 3.3 权重和激活值更新 4.结论[3] 参考资料 1.简介 ​ 二值化神经网络,在浮点型(权重值和激活函数值存储类型,32bit)神经网络的基础,将其权重和激活函数值进行二值化(+1,-1存储,只需1bit)得到的神经网络.[1] ​ BNN可用于嵌入式或移动场景(例如手机端.可穿戴设备.自动驾驶汽车等)[1],这些场景都没有GPU且计算能力和存储容量相对较弱且限制较大,具有研究的价值和意义. 二值化神…
https://www.jianshu.com/p/f9b015cc4514 https://github.com/hpi-xnor/BMXNet  BMXNet:基于MXNet的开源二值神经网络实现 Index Introduction Related Works Binary Neural Networks XNOR-Net Conclusion Introduction 神经网络模型的压缩是一个很有前景的方向.由于神经网络需要较大的计算量,目前来说,我们通常在服务器上对神经网络进行训练或是…
1. np.stack((x_t, x_t, x_t, x_t), axis=2)  将图片进行串接的操作,使得图片的维度为[80, 80, 4] 参数说明: (x_t, x_t, x_t, x_t) 表示需要进行串接的图片, axis = 2 表示在第三个维度上进行串接操作 2. cv2.resize(x, [80, 80])  # 将图片的维度变化为80 * 80的维度 参数说明, x为输入的图片,80, 80表示图片变化的维度 3.cv2.cvtColor(x_t, tf.COLOR_RG…
主要讲解OTSU算法实现图像二值化:    1.统计灰度级图像中每个像素值的个数. 2.计算第一步个数占整个图像的比例. 3.计算每个阈值[0-255]条件下,背景和前景所包含像素值总个数和总概率(就是分别计算背景和前景下第一步和第二步的              和). 4.比较第三步前景和背景之间方差,找到最大的一个确定为选定的阈值. OTSU源码: 1 #include <opencv2/opencv.hpp> #include <iostream> #include <…
处理连续性特征 二值化与分段 sklearn.preprocessing.Binarizer根据阈值将数据二值化(将特征值设置为0或1),用于处理连续型变量.大于阈值的值映射为1,而小于或等于阈值的值映射为0.默认阈值为0时,特征中所有的正值都映射到1.二值化是对文本计数数据的常见操作,分析人员可以决定仅考虑某种现象的存在与否.它还可以用作考虑布尔随机变量的估计器的预处理步骤(例如,使用贝叶斯设置中的伯努利分布建模). #将年龄二值化 data_2 = data.copy() from skle…
重点介绍了全局二值化原理及数学实现,并利用emgucv方法编程实现. 一.理论概述(转载,如果懂图像处理,可以略过,仅用作科普,或者写文章凑字数)  1.概述 图像二值化是图像处理中的一项基本技术,也是很多图像处理技术的预处理过程. 图像的预处理在进行图像二值化操作前要对图像进行预处理,包括彩色图像灰化和增强.由于选取阈值需要参照直方图,因此在图像进行处理后,我们再获取图像的直方图以帮助选取阈值.整个流程如下所示: 读取图像→灰度图像→图像增强→图像直方图→二值化处理 2.数学原理(转载,基本可…
前几天接触了图像的处理,发现用OPencv处理确实比較方便.毕竟是非常多东西都封装好的.可是要研究里面的东西,还是比較麻烦的,首先,你得知道图片处理的一些知识,比方腐蚀,膨胀,仿射,透射等,还有非常多算法,傅里叶.积分,卷积,频谱,加权. ..,反正我看了半天,是云里雾里的.所以就想先就笼统的过一遍,以后遇到了再详细分析,比較这方面的基础没那么扎实. 先来记录下眼下学习到的一些知识. 首先是图像的灰度处理: CV_LOAD_IMAGE_GRAYSCALE,这是最简单之间的办法,在加载图像时直接处…
c# 验证码的识别主要分为预处理.分割.识别三个步骤 首先我从网站上下载验证码 处理结果如下: 1.图片预处理,即二值化图片 *就是将图像上的像素点的灰度值设置为0或255. 原理如下: 代码如下: #region 二值化图片 /// <summary> /// 二值化图片 /// 就是将图像上的像素点的灰度值设置为0或255 /// </summary> /// <returns>处理后的验证码</returns> public Bitmap Binary…
定义:图像的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果. 一幅图像包括目标物体.背景还有噪声,要想从多值的数字图像中直接提取出目标物体,常用的方法就是设定一个阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群.这是研究灰度变换的最特殊的方法,称为图像的二值化(Binarization). 简单的阈值-(全局阈值): Python-OpenCV中提供了阈值(threshold)函数: cv2.threshold() 函数:…
注:本文是人工智能研究网的学习笔记 规范化(Normalization) Normalization: scaling individual to have unit norm 规范化是指,将单个的样本特征向量变换成具有单位长度(unit norm)的特征向量的过程.当你要使用二次形式(quadratic from)如点积或核变换运算来度量任意一堆样本的相似性的时候,数据的规范化会非常的有用 假定是基于向量空间模型,经常被用于文本分类和内容的聚类. 函数normalize提供了快速简单的方法使用…