luogu P5323 [BJOI2019]光线】的更多相关文章

传送门 先考虑\(n=1\)的情况不是输入数据都告诉你了吗 然后考虑\(n=2\),可以光线是在弹来弹去的废话,然后射出去的光线是个等比数列求和的形式,也就是\(x_1\sum_{i=1}^{\infty} d^i=x_1\frac{1}{1-d}\),然后弹回去的光线第一个光线就是\(b_i\),然后后面也是等比数列求和,算一下就好了 \(n>2\),我们做完\(n-1\)后,可以把刚刚算过的玻璃看成一块,因为已经知道会射出去多少以及弹回去多少,然后就变成了\(n=2\),那么递推做即可 我写…
题目大意:有$n$层玻璃,每层玻璃会让$a\%$的光通过,并把$b\%$的光反射.有一束光从左向右射过,问多少的光可以透过这$n$层玻璃 题解:事实上会发现,可以把连续的几层玻璃合成一层玻璃,但是要注意玻璃两侧的反射率可能是不一样的. 令$A$为前$i$层玻璃的透过率,$B$为前$i$层玻璃从右向左的反射率.$a$为第$i+1$层玻璃的透过率,$b$为第$i$层玻璃的反射率.那么前$i+1$层玻璃的透过率为$A'$,前$i+1$层玻璃从右向左的反射率为$B'$$$A'=Aa\sum_{i=0}^…
[BJOI2019]光线(递推) 题面 洛谷 题解 假装玻璃可以合并,假设前面若干玻璃的透光率是\(A\),从最底下射进去的反光率是\(B\),当前的玻璃的透光率和反光率是\(a,b\). 那么可以得到转移: \[A=A'\sum_{j=0}^\infty B'^j*b^j*a=\frac{A'a}{1-B'b}\] \[B=b+a\sum_{j=0}^\infty B'^j*b^j*a*B'=b+\frac{B'a^2}{1-B'b}\] 然后就做到线性了. #include<iostream…
题目链接: [BJOI2019]光线 设$F_{i}$表示从第$1$面玻璃上面向下射入一单位光线,穿过前$i$面玻璃的透光率. 设$G_{i}$表示从第$i$面玻璃下面向上射入一单位光线,穿过前$i$面玻璃的反光率. 那么可以推出: $F_{i}=F_{i-1}a_{i}\sum\limits_{k=0}^{+\infty}(G_{i-1}b_{i})^k$ $G_{i}=b_{i}+G_{i-1}a_{i}^2\sum\limits_{k=0}^{+\infty}(G_{i-1}b_{i})^…
题意 题目链接 分析 令 \(f_i\) 表示光线第一次从第一块玻璃射出第 \(i\) 块玻璃的比率. 令 \(g_i\) 表示光线射回第 \(i\) 块玻璃,再射出第 \(i\) 块玻璃的比率. 容易得到: \[\begin{cases}f_i=f_{i-1}a_i+f_{i-1}b_ig_i\\g_i=b_{i-1}a_i+b_{i-1}b_ig_i+a_{i-1}g_{i-1}a_i+a_{i-1}g_{i-1}b_ig_i\end{cases}\] 对于 (2) 式,移项可得 \[g_i…
看起来很麻烦,做起来并不难的题 以下设:$a_i=\frac{a_i}{100},b_i=\frac{b_i}{100}$ 显然,如果$b_i=0$的话,直接求$\Pi a_i$就是答案. 解决反射问题是这个问题的关键 我们显然可以认为一束光透过之后,可以等其他的光一起**透过干净** 再往后走. 这样就存在Dp的阶段了. 网上很多从“前i个整体透光率”“整体反光率”什么的,或者枚举反射次数,还要等比数列求和.其实不用这么麻烦. 设$f[i][1]$表示,一单位的光从玻璃i左边射过来,**最终透…
传送门 不如先考虑暴力,能删的序列首先有\(1,2,3...n\),还有就是升序排序后从后往前放数,第\(i\)位要么放\(i\),要么放\(i+1\)位置的数,例如\(1,2,4,4,5,6,9,9,9\) 如果一个数\(i\)出现了若干次,假如是\(num_i\)次,我们发现是可以在\(i,i-1,i-2...i-num_i+1\)上放\(i\)的,这样放完之后,如果有的位置没有用到现有的数放上去,那么就要从没用的数里改一个放过来,问题也就是用一堆数,最多能放多少个位置.考虑从后往前放,然后…
传送门 普及dp 设\(f_{i,j}\)表示前\(i\)个城堡,用\(j\)人的最大价值,转移枚举一个对手,如果这个对手在\(i\)这个城堡人数是第\(k\)小的,那么用\(2a_i+1\)人可以得到\(ik\)的价值 #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<vector>…
传送门 首先我们要知道要求什么.显然每次放方块要放一大段不能从中间分开的部分.设\(m=2\)方案为\(f\),\(m=3\)方案为\(g\),\(m=2\)可以放一个竖的,或者两个横的,所以\(f_i=f_{i-1}+f_{i-2}\);\(m=3\),因为只有\(i\)为偶数有值,所以后面的\(i\)其实是\(2i\),然后可以发现要么放三个横的,要么像下面这样放长度为偶数的块 |--| ------ |--| |----| ---- |----| 可以注意到每种长度都有两种方案(长度为\(…
传送门 要求的东西带个根号,这玩意叫几何平均数,说到平均数,我们就能想到算术平均数(就是一般意义下的平均数),而这个东西是一堆数之积开根号,所以如果每个数取对数,那么乘法会变成加法,开根号变成除法,所以我们只要最大化\(\frac{\sum_i ln_{a_i}}{c}\)就行了 这是一个分数规划的形式,首先二分最终答案\(mid\),然后我们要求最大答案,所以要检查\(\frac{\sum_i ln_{a_i}}{c}\)是否可以\(\ge mid\),可以改成\[\sum_i ln_{a_i…