摘要 本文主要说明SVM中用到的超平面方程是怎么来的,以及各个符号的物理意义,怎么算空间上某点到该平面的距离. 正文 < 统计学习方法>一书给出如下说明: 首先说明我对超平面的理解: 在三维坐标系里,XoY平面把三维坐标系"分割"成两个空间,这个分割平面引申到一维,二维,四维空间-来,他就是一个超平面.一维里是一个点分割空间,二维里是条线,3维刚好是个平面,4维的用几何已经无法表示了,但是我们赋予这个分割的东西为超平面,就比较形象了. 对于这个分离超平面方程时怎么来的,书中…
翻译:Tacey Wong 统计学习: 随着科学实验数据的迅速增长,机器学习成了一种越来越重要的技术.问题从构建一个预测函数将不同的观察数据联系起来,到将观测数据分类,或者从未标记数据中学习到一些结构. 本教程将探索机器学习中统计推理的统计学习的使用:将手中的数据做出结论 Scikit-learn 是一个紧密结合Python科学计算库(Numpy.Scipy.matplotlib),集成经典机器学习算法的Python模块. 一.统计学习:scikit-learn中的设置与评估函数对象 (1)数据…
统计学习:scikit学习中的设置和估计对象 数据集 Scikit学习处理来自以2D数组表示的一个或多个数据集的学习信息.它们可以被理解为多维观察的列表.我们说这些阵列的第一个轴是样本轴,而第二个轴是 特征轴. scikit:iris数据集附带的一个简单示例 >>> >>> from sklearn import datasets >>> iris = datasets.load_iris() >>> data = iris.data…
目前在看统计学习导论:基于R应用,觉得这本书非常适合入门,打算把课后习题全部做一遍,记录在此博客中. 第二章习题 1. (a) 当样本量n非常大,预测变量数p很小时,这样容易欠拟合,所以一个光滑度更高的学习模型更好. (b) 当样本量n非常小,预测变量数p很大时,这样容易过拟合,所以一个光滑度更小的学习模型更好. (c) 当预测变量与响应变量之间的关系是非线性时,说明光滑度小的模型会容易欠拟合,所以光滑度高的模型更适合. (d) 在这里,方差是指用一个不同的训练数据集估计f时,估计函数的改变量.…
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计”(Maximum Likelihood Estimation, MLE)与“最大后验概率估计”(Maximum A Posteriori Estimation,MAP)的历史可谓源远流长,这两种经典的方法也成为机器学习领域的基础被广泛应用. 有趣的是,这两种方法还牵扯到“频率学派”与“贝叶斯学派”的派别之争,…
一. 统计学习概述 统计学习是指一组用于理解数据和建模的工具集.这些工具可分为有监督或无监督.1.监督学习:用于根据一个或多个输入预测或估计输出.常用于商业.医学.天体物理学和公共政策等领域.2.无监督学习:有输入变量,但没有输出变量,可以从这些数据中学习潜在关系和数据结构.以下简单的用3个数据集来说明. 1.工资数据 我们希望了解雇员的年龄.教育和年份对他的工资之间的联系.下图是对这三个因素的一个分析和统计. 左图:工资随着年龄的增长而增加,但在大约60岁之后又下降了.蓝线提供了对该年龄段平均…
接着统计学习中knn算法实验(1)的内容 Problem: Explore the data before classification using summary statistics or visualization Pre-process the data (such as denoising, normalization, feature selection, …) Try other distance metrics or distance-based voting Try other…
模型 超平面 我们称下面形式的集合为超平面 \[\begin{aligned} \{ \bm{x} | \bm{a}^{T} \bm{x} - b = 0 \} \end{aligned} \tag{1} \] 其中\(\bm{a} \in \mathbb{R}^n\)且\(\bm{a} \ne \bm{0} , \bm{x}\in \mathbb{R}^n, b \in \mathbb{R}\).解析地看,超平面是关于\(\bm{x}\)的非平凡线性方程的解空间(因此是一个仿射集,仿射集和凸集…
学习策略 软间隔最大化 上一章我们所定义的"线性可分支持向量机"要求训练数据是线性可分的.然而在实际中,训练数据往往包括异常值(outlier),故而常是线性不可分的.这就要求我们要对上一章的算法做出一定的修改,即放宽条件,将原始的硬间隔最大化转换为软间隔最大化. 给定训练集 \[\begin{aligned} D = \{\{\bm{x}^{(1)}, y^{(1)}\}, \{\bm{x}^{(2)}, y^{(2)}\},..., \{\bm{x}^{(m)}, y^{(m)}\…
1. 模型 1.1 超平面 我们称下面形式的集合为超平面 \[\begin{aligned} \{ \bm{x} | \bm{a}^{T} \bm{x} - b = 0 \} \end{aligned} \tag{1} \] 其中\(\bm{a} \in \mathbb{R}^n\)且\(\bm{a} \ne \bm{0} , \bm{x}\in \mathbb{R}^n, b \in \mathbb{R}\).解析地看,超平面是关于\(\bm{x}\)的非平凡线性方程的解空间(因此是一个仿射集…