文章地址: https://blog.csdn.net/u014380165/article/details/71667916 论文:Aggregated Residual Transformations for Deep Neural Networks 论文链接:https://arxiv.org/abs/1611.05431 PyTorch代码:https://github.com/miraclewkf/ResNeXt-PyTorch 这是一篇发表在2017CVPR上的论文,介绍了ResNe…
文章来源 论文:Xception: Deep Learning with Depthwise Separable Convolutions 论文链接:https://arxiv.org/abs/1610.02357 算法详解: Xception是google继Inception后提出的对Inception v3的另一种改进,主要是采用depthwise separable convolution来替换原来Inception v3中的卷积操作. 要介绍Xception的话,需要先从Inceptio…
论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesian Optimization evolutionary algorithm  注:本文主要是结合自己理解对原文献的总结翻译,有的部分直接翻译成英文不太好理解,所以查阅原文会更直观更好理解. 本文主要就Search Space.Search Strategy.Performance Estimatio…
前言 在论文笔记:CNN经典结构1中主要讲了2012-2015年的一些经典CNN结构.本文主要讲解2016-2017年的一些经典CNN结构. CIFAR和SVHN上,DenseNet-BC优于ResNeXt优于DenseNet优于WRN优于FractalNet优于ResNetv2优于ResNet,具体数据见CIFAR和SVHN在各CNN论文中的结果.ImageNet上,SENet优于DPN优于ResNeXt优于WRN优于ResNet和DenseNet. WideResNet( WRN ) mot…
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40th Annual Computer Software and Applications Conference) 单位: Nagoya University(名古屋大学).NTT Secure Platform Laboratories(NTT安全平台实验室) 方法概述 数据:81个恶意软件日志文件…
论文笔记: Dual Deep Network for Visual Tracking  2017-10-17 21:57:08  先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. 文章将 边界和形状信息结合到深度网络中.底层 feature 和 高层 feature 结合起来,得到 coarse prior map,然后用 ICA-R model 得到更加显著的物体轮廓,以得到更好的似然性模型: 2. Dual network 分别处理两路不同的网络,使得前景和背景更加具有…
Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28  Motivation: 本文是要根据最新的条件产生式对抗玩网络(CGANs)来完成,人类老年照片的估计. 主要是做了一下两个事情: 1. 根据年龄阶段,进行照片的老年估计,用 acGAN 网络来完成: 2. 提出一种 隐层变量优化算法(latent vector optimization approach),允许 acGAN 可以重构输入人脸图像…
论文笔记 <Maxout Networks> && <Network In Network> 发表于 2014-09-22   |   1条评论 出处 maxout:http://arxiv.org/pdf/1302.4389v4.pdfNIN:http://arxiv.org/abs/1312.4400 参考 maxout和NIN具体内容不作解释下,可以参考:Deep learning:四十五(maxout简单理解)Network In Network 各用一句话…
Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS算法都侧重于搜索cell的结构,即当搜索得到一种cell结构后只是简单地将固定数量的cell按链式结构连接起来组成最终的网络模型.AutoDeeplab则将如何cell的连接方式也纳入了搜索空间中,进一步扩大了网络结构的范围. dense image prediction 之前的大多数NAS算法都是…
Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN 网络结构上,将卷积神经网络提出的特征,分为两路走,即:the state value function 和 the state-dependent action advantage function. 这个设计的主要特色在于 generalize learning across actions w…