记录:TensorFlow 中的 padding 方式】的更多相关文章

TensorFlow 中卷积操作和池化操作中都有一个参数 padding,其可选值有 ['VALID', 'SAME']. 在 TensorFlow 文档中只是给出了输出张量的维度计算方式,但是并没有说明当 padding='SAME' 时,如何进行补零操作. 其给出的输出张量的维度计算公式: VALID 方式: output_shape[i] = ceil((input_shape[i] - (filter_shape[i] - 1) * dilation_rate[i]) / strides…
转载请注明出处:http://www.cnblogs.com/willnote/p/6746668.html 图示说明 用一个3x3的网格在一个28x28的图像上做切片并移动 移动到边缘上的时候,如果不超出边缘,3x3的中心就到不了边界 因此得到的内容就会缺乏边界的一圈像素点,只能得到26x26的结果 而可以越过边界的情况下,就可以让3x3的中心到达边界的像素点 超出部分的矩阵补零 代码说明 根据tensorflow中的conv2d函数,我们先定义几个基本符号 输入矩阵 W×W,这里只考虑输入宽…
本博客默认读者对神经网络与Tensorflow有一定了解,对其中的一些术语不再做具体解释.并且本博客主要以图片数据为例进行介绍,如有错误,敬请斧正. 使用Tensorflow训练神经网络时,我们可以用多种方式来读取自己的数据.如果数据集比较小,而且内存足够大,可以选择直接将所有数据读进内存,然后每次取一个batch的数据出来.如果数据较多,可以每次直接从硬盘中进行读取,不过这种方式的读取效率就比较低了.此篇博客就主要讲一下Tensorflow官方推荐的一种较为高效的数据读取方式——tfrecor…
卷积运算在数学上是做矩阵点积,这样可以调整每个像素上的BGR值或HSV值来形成不同的特征.从代码上看,每次卷积核扫描完一个通道是做了一次四重循环.下面以VALID卷积方式为例进行解释. 下面是python的代码: def convolve(dateMat,kernel): m,n = dateMat.shape km,kn = kernel.shape newMat = np.ones(((m - km + 1),(n - kn + 1))) tempMat = np.ones(((km),(k…
卷积和转置卷积,都涉及到padding, 那么添加padding 的具体方式,就会影响到计算结果,所以搞清除tensorflow中卷积和转置卷积的具体实现有助于模型的灵活部署应用. 一.卷积 举例说明: X:  1        2        3        4          5 6        7        8        9         10 11      12      13       14        15 16      17       18      1…
根据tensorflow中的Conv2D函数,先定义几个基本符号: 输入矩阵W*W,这里只考虑输入宽高相等的情况,如果不相等,推导方法一样 filter矩阵F*F,卷积核 stride值S,步长 输出宽高为new_height,new_width 在tensorflow中padding的方式有两种,一种是valid,一种是same padding='valid' new_height = new_width = (W - F + 1) / S  (结果向上取整) 也就是说,Conv2D的vali…
在深度学习的图像识别领域中,我们经常使用卷积神经网络CNN来对图像进行特征提取,当我们使用TensorFlow搭建自己的CNN时,一般会使用TensorFlow中的卷积函数和池化函数来对图像进行卷积和池化操作,而这两种函数中都存在参数padding,该参数的设置很容易引起错误,所以在此总结下. 1.为什么要使用padding 在弄懂padding规则前得先了解拥有padding参数的函数,在TensorFlow中,主要使用tf.nn.conv2d()进行(二维数据)卷积操作,tf.nn.max_…
目录 1. 指数衰减 2. 分段常数衰减 3. 自然指数衰减 4. 多项式衰减 5. 倒数衰减 6. 余弦衰减 6.1 标准余弦衰减 6.2 重启余弦衰减 6.3 线性余弦噪声 6.4 噪声余弦衰减 Reference   上文深度神经网络中各种优化算法原理及比较中介绍了深度学习中常见的梯度下降优化算法:其中,有一个重要的超参数--学习率\(\alpha\)需要在训练之前指定,学习率设定的重要性不言而喻:过小的学习率会降低网络优化的速度,增加训练时间:而过大的学习率则可能导致最后的结果不会收敛,…
原文地址: https://blog.csdn.net/jasonzzj/article/details/53930074 --------------------------------------------------------------------------------------- SAME means that the output feature map has the same spatial dimensions as the input feature map. Zer…
项目中有的时候我们会用到动态表达式的方式去查询数据,这里简单记录下个人的使用方式,方便使用↓ //构建参数表达式 ParameterExpression parameter = Expression.Parameter(typeof(SimpleResult)); Expression conditionValue = Expression.Equal(Expression.Property(parameter, groupFileName), Expression.Constant(value…