可视化并理解CNN】的更多相关文章

转载地址:https://zhuanlan.zhihu.com/p/24833574 一.前言 CNN作为一个著名的深度学习领域的“黑盒”模型,已经在计算机视觉的诸多领域取得了极大的成功,但是,至今没有人能够“打开”这个“黑盒”,从数学原理上予以解释.这对理论研究者,尤其是数学家来说当然是不可接受的,但换一个角度来说,我们终于创造出了无法完全解释的事物,这也未尝不是一种进步了! 当然,虽然无法完全“打开”这个“黑盒”,但是仍然出现了很多探索这个“黑盒”的尝试工作.其中一个工作就是今天我们讨论的重…
原文地址:https://zhuanlan.zhihu.com/p/24833574 一.前言 CNN作为一个著名的深度学习领域的“黑盒”模型,已经在计算机视觉的诸多领域取得了极大的成功,但是,至今没有人能够“打开”这个“黑盒”,从数学原理上予以解释.这对理论研究者,尤其是数学家来说当然是不可接受的,但换一个角度来说,我们终于创造出了无法完全解释的事物,这也未尝不是一种进步了! 当然,虽然无法完全“打开”这个“黑盒”,但是仍然出现了很多探索这个“黑盒”的尝试工作.其中一个工作就是今天我们讨论的重…
参考:https://zhuanlan.zhihu.com/p/24833574 学习论文[1311.2901] Visualizing and Understanding Convolutional Networks 知乎专栏这篇可视化CNN讲的挺不错,我再稍微提炼下. Visualization with a Deconvnet:将feature map中的特征通过反池化.反激活.反卷积映射到像素. 反池化可通过记录最大激活值的位置来实现,反激活直接使用ReLU,反卷积采用该卷积核的转置来进…
1. 阅读论文:Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解感受野 定义:receptive field, or field of view (感受野) A unit in convolutional networks only depends on a region of the input. This region in the input is the recepti…
在深度学习的算法学习中,都会提到 channels 这个概念.在一般的深度学习框架的 conv2d 中,如 tensorflow .mxnet ,channels 都是必填的一个参数. channels 该如何理解?先看一看不同框架中的解释文档. 首先,是tensorflow中给出的,对于输入样本中 channels 的含义.一般的RGB图片,channels 数量是 3 (红.绿.蓝):而monochrome图片,channels 数量是 1 . channels :——tensorflow…
1 TensorFlow中用到padding的地方 在TensorFlow中用到padding的地方主要有tf.nn.conv2d(),tf.nn.max_pool(),tf.nn.avg_pool()等,用法如下: tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None,name=None) #来进行(二维数据)卷积操作 tf.nn.max_pool_with_argmax(input, ksize, stride…
https://blog.csdn.net/v_july_v/article/details/79434745 Youtube上迄今为止最好的卷积神经网络快速入门教程 https://www.bilibili.com/video/av48197041/…
cs231n的第18课理解起来很吃力,听后又查了一些资料才算是勉强弄懂,所以这里贴一篇博文(根据自己理解有所修改)和原论文的翻译加深加深理解,其中原论文翻译比博文更容易理解,但是太长,而博文是业者而非学者所著,看着也更舒服一点. 另,本文涉及了反向传播的backpropagation算法,知乎上有个回答很不错,备份到文章里了,为支持原作者,这里给出知乎原文连接 可视化理解卷积神经网络 这张PPT是本节课的核心,下面我来说说这张图. 可视化神经网络的思想就是构建一个逆向的卷积神经网络,但是不包括训…
对CNN感受野一些理解 感受野(receptive field)被称作是CNN中最重要的概念之一.为什么要研究感受野呐?主要是因为在学习SSD,Faster RCNN框架时,其中prior box和Anchor box的设计,一直搞不明白.当我理解了感受野才有点恍然大悟的感觉.快速看完这篇文章的前提是,要对CNN有个大致了解,feature map等术语要知道. 先看八股式定义,感受野:在卷积神经网络CNN中,决定某一层输出结果中一个元素所对应的输入层的区域大小,被称作感受野receptive…
本文翻译自A guide to receptive field arithmetic for Convolutional Neural Networks(可能需要FQ才能访问),方便自己学习和参考.若有侵权,还请告知. 感受野(receptive field)可能是卷积神经网络(Convolutional Neural Network,CNNs)中最重要的概念之一,值得我们关注和学习.当前流行的物体识别方法的架构大都围绕感受野的设计.但是,当前并没有关于CNN感受野计算和可视化的完整指南.本教程…