Python numpy 浮点数精度问题】的更多相关文章

Python numpy 浮点数精度问题 在复现FP(fictitious play, Iterative solution of games by fictitious play-page393)算法的时候,迭代到中间发现没法复现paper里的结果,发现是numpy矩阵运算浮点数精度的问题. 具体问题 矩阵和向量相乘 \[\begin{pmatrix} 3 & 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 3 & 1.1 &…
浮点数python默认是17位精度,也就是小数点后16位(16位以后的全部四舍五入了),虽然有16位,但是这个精度越往后越不准. 如果有特殊需求,需要更多的精度,可以用decimal模块,通过更改其里面getcontext()函数里面的prec参数,来决定你想要的浮点数精度. from decimal import Decimal from decimal import getcontext work_context = getcontext() work_context.prec = 100…
Python中,浮点数运算,经常会碰到如下情况: 出现上面的情况,主要还是因浮点数在计算机中实际是以二进制保存的,有些数不精确.比如说: 0.1是十进制,转化为二进制后它是个无限循环的数:0.00011001100110011001100110011001100110011001100110011001100而python是以双精度(64)位来保存浮点数,多余的位会被截掉,所以看到的是0.1,但在电脑上实际保存的已不是精确的0.1,参与运算后,也就有可能点误差,特别是金融邻域里面,对精度更是要求…
本篇讨论的现象可以从下面这段脚本体现出来: >>> x = 0.0 >>> for i in range(10): x += 0.1 print(x) 0.1 0.2 0.30000000000000004 0.4 0.5 0.6 0.7 0.7999999999999999 0.8999999999999999 0.9999999999999999 >>> 即:为什么有几行的输出看起来不对? 因为 Python 中使用双精度浮点数来存储小数.在 Py…
Python的浮点数损失精度问题(转) 一个简单的面试题: >>>0.1+0.1+0.1 0.2 >>>0.1+0.1+0.1 0.30000000000000004 >>>0.1+0.1+0.1-0.3 5.551115123125783e-17   下面一个简单的例子: a = 0.0 for i in range(10): print(a) a+=0.1 结果: 打印0.1 连续相加10次,会显示不同的值,既是精度损失造成的.   另外一个问题:…
关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的mat…
一.NumPy简介 其官网是:http://www.numpy.org/ NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Numpy内部解除了CPython的GIL(全局解释器锁),运行效率极好,是大量机器学习框架的基础库! 关于GIL请参考博客:http://www.cnblogs.com/wj-1314/p/9056555.html NumPy的全名为Numeric Python,是一个开源的Python科学计算库,它包…
接下来要做一个linux下的程序了. 下载linux version     fbx sdk tar zxvf ...gz 按照安装说明 提升权限并没什么用 还是,cannot execute binary file 感觉是版本的问题,也就是说我要用f extension bx sdk这个版本 是dll的 vs跑完用mingw windows + vs2013用的肯定是 febx sdk windows version mingw 下面,据说那只是gcc而不意味着 linux所以...也许还是要…
Python/Numpy大数据编程经验 1.边处理边保存数据,不要处理完了一次性保存.不然程序跑了几小时甚至几天后挂了,就啥也没有了.即使部分结果不能实用,也可以分析程序流程的问题或者数据的特点.   2. 及时用 del 释放大块内存.Python缺省是在变量范围(variablescope)之外才释放一个变量,哪怕这个变量在后面的代码没有再被用到,所以需要手动释放大的array.    注意所有对数组的引用都del之后,数组才会被del.这些引用包括A[2:]这样的view,即使np.spl…
 在python&numpy中切片(slice) 上文说到了,词频的统计在数据挖掘中使用的频率很高,而切片的操作同样是如此.在从文本文件或数据库中读取数据后,需要对数据进行预处理的操作.此时就需要对数据进行变换,切片,来生成自己需要的数据形式. 对于一维数组来说,python原生的list和numpy的array的切片操作都是相同的.无非是记住一个规则arr_name[start: end: step],就可以了. 实例: 下面是几个特殊的例子: [:]表示复制源列表 负的index表示,从后往…