scikit-learn系列之如何存储和导入机器学习模型   如何存储和导入机器学习模型 找到一个准确的机器学习模型,你的项目并没有完成.本文中你将学习如何使用scikit-learn来存储和导入机器学习模型.你可以把你的模型保持到文件中,然后再导入内存进行预测. 1. 用Pickle敲定你的模型 Pickle是python中一种标准的序列化对象的方法.你可以使用pickle操作来序列化你的机器学习算法,保存这种序列化的格式到一个文件中.稍后你可以导入这个文件反序列化你的模型,用它进行新的预测.…
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的句子,我以自己的理解意译. 翻译自:Scikit Learn:Machine Learning in Python 作者: Fabian Pedregosa, Gael Varoquaux 先决条件 Numpy, Scipy IPython matplotlib scikit-learn 目录 载入…
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的常见准则有: 1.      均方误差(mean squared error,MSE): 2.      平均绝对误差(mean absolute error,MAE) 3.      R2 score:scikit learn线性回归模型的缺省评价准则,既考虑了预测值与真值之间的差异,也考虑了问题…
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import numpy as np from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sk…
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉验证 交叉验证用于评估模型性能和进行参数调优(模型选择).分类任务中交叉验证缺省是采用StratifiedKFold. sklearn.cross_validation.cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jo…
写在前面 Solidity 是以太坊智能合约编程语言,阅读本文前,你应该对以太坊.智能合约有所了解, 如果你还不了解,建议你先看以太坊是什么 这部分的内容官方英文文档讲的不是很透,因此我在参考Solidity官方文档(当前最新版本:0.4.20)的同时加入了深入分析部分,欢迎订阅专栏. 数据位置(Data location) 在系列第一篇,我们提到 Solidity 类型分为两类: 值类型(Value Type) 及 引用类型(Reference Types), 前面我们已经介绍完了值类型,接下…
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.…
原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/11681069.html 一.初始化世界以及模型 /// 冲突配置包含内存的默认设置,冲突设置.高级用户可以创建自己的配置. btDefaultCollisionConfiguration* collisionConfiguration = new btDefaultCollisionConfiguration(); /// 使用默认的冲突调度程序.对于并行处理,您可以使用不同的分派器(参见E…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/ ,学习更多的机器学习.深度学习的知识! 目录: 数据预处理 归一化 标准化 离散化 二值化 哑编码 特征工程 特征提取 特征选择 模型评估方法 留出法 交叉验证法 自助法 模型性能度量 正确率(accuracy)和错误率(error rate) 查准率(precision).查全率(recall)与 参考文献 一.数据预处理 数据预处理的方式较多,针对不同类型的数据,预处理的方式和内容也不尽相同,这里…
  网上关于PV3D导入DAE模型的例子都非常多,可惜我研究了半天,一个都没成功,或者是破面问题,或者是贴图不显示,再或者贴图乱掉了.今天晚上终于搞定,心得发上来. 制作模型的软件是SketchUp Pro 7.1,选这个主要是体积小,建模方便,毕竟Maya和3Ds max都上是GB的体积,SketchUp才30MB. 在SketchUp中建好模,注意不能让模型成组,选择文件-导出3D模型,注意右下角的选项,勾上“输出材质纹理”,其他都可以不选,导出格式选dae即可. 找到这个dae文件,用记事…