首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
机器学习10k均值
】的更多相关文章
机器学习10k均值
下面介绍无监督机器学习算法,与前面分类回归不一样的是,这个不知道目标变量是什么,这个问题解决的是我们从这些样本中,我们能发现什么. 这下面主要讲述了聚类算法,跟数据挖掘中的关联挖掘中的两个主要算法. K均值算法工作流程,首先随机确定k个初始点作为质心.然后将数据集中的每个点分配到一个簇中. 具体的讲就是为每个点找到最近的质心,并将其分配给该质心所对应的簇,这一步完成之后,每个簇的质心更新为该簇所有点的平均值. 具体伪代码如下: 为了克服K-均值算法收敛于局部最小值问题,有人提出了二分K-均值…
机器学习实战笔记-10-K均值聚类
K-均值聚类 优点:易实现.缺点:可能收敛到局部最小值,大规模数据集上收敛较慢:适用于数值型数据. K-均值聚类(找到给定数据集的k个簇) 算法流程 伪代码: 创建k个点作为起始质心(经常是随机选择) 当任意一个点的簇分配结果发生改变时 对数据集中的每个数据点 对每个质心 计算质心到数据点的间距 将数据点分配到距其最近的簇 对每个簇,计算簇中所有点的均值并将均值作为质心 评价指标:误差(实质上是数据点到簇质心的距离的平方值之和,SSE,Sum of Squared Error),以上K-均值算法…
吴裕雄 python 机器学习——K均值聚类KMeans模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics import adjusted_rand_score from sklearn.datasets.samples_generator import make_blobs def create_data(centers,num=100,std=0.7): X, labels_true = make_b…
机器学习算法与Python实践之(五)k均值聚类(k-means)
机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 机器学习中有两类的大问题,一个是分类,一个是聚类.分类是根据一些给定的已知类别标号的样本,训练某种学习机器,使它能够对未知类别的样本进行分类.这属于supervised learning(监督学习).而聚类指事先并不知道任何样本的类别标号,…
【机器学习笔记五】聚类 - k均值聚类
参考资料: [1]Spark Mlib 机器学习实践 [2]机器学习 [3]深入浅出K-means算法 http://www.csdn.net/article/2012-07-03/2807073-k-means 一.概念 K-means聚类是在无监督的情况下,将样本数据进行聚类.以2均值聚类的算法为例: 1.在样本中选择两个初始化中心点: 2.计算所有样本到这两个中心点的距离,并以此为基准将样本分为两类: 3.将中心点移到这类样本的新中心点: 4.重复2.3步骤直到满足要求: K-means…
机器学习算法与Python实践之(六)二分k均值聚类
http://blog.csdn.net/zouxy09/article/details/17590137 机器学习算法与Python实践之(六)二分k均值聚类 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来…
机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例
k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定,可视化数据分布,直观确定即可): 2 遍历数据集的每个实例,计算其到每个质心的相似度,这里也就是欧氏距离:把每个实例都分配到距离最近的质心的那一类,用一个二维数组数据结构保存,第一列是最近质心序号,第二列是距离: 3 根据二维数组保存的数据,重新计算每个聚簇新的质心: 4 迭代2 和 3,直到收敛…
机器学习实战1-K均值
本例来源于github项目:https://github.com/jakevdp/sklearn_pycon2015/blob/master/notebooks/04.2-Clustering-KMeans.ipynb 算法说明: K-means算法是一种无监督聚类算法,即在没有标签的数据集中找出同类.k-means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有值的均值得到,每个类用聚类中心来描述.对于给定的一个包含n个d维数据…
【机器学习】K均值算法(II)
k聚类算法中如何选择初始化聚类中心所在的位置. 在选择聚类中心时候,如果选择初始化位置不合适,可能不能得出我们想要的局部最优解. 而是会出现一下情况: 为了解决这个问题,我们通常的做法是: 我们选取K<m个聚类中心. 然后随机选择K个训练样本的实例,之后令k个聚类中心分别与k个训练实例相等. 之后我们通常需要多次运行均值算法.每一次都重新初始化,然后在比较多次运行的k均值的结果,选择代价函数较小的结果.这种方法在k较小的时候可能会有效果,但是在K数量较多的时候不会有明显改善. 如何选取聚类数量…
【机器学习】K均值算法(I)
K均值算法是一类非监督学习类,其可以通过观察样本的离散性来对样本进行分类. 例如,在对如下图所示的样本中进行聚类,则执行如下步骤 1:随机选取3个点作为聚类中心. 2:簇分配:遍历所有样本然后依据每个点到最近距离进行分类.(在图 中用不同颜色标出) 3:移动聚类中心到各个分类样本的平均中心. 然后再次根据新的聚类中心划分分类簇,原理同步骤2,再执行步骤3 不断循环,直到聚类中心保持不变. 最后结果: 如果用μ1 μ2---μ k来表示聚类中心,用c 1 c 2---c m 用来存储第i个实例数据…