1. createStream会使用 Receiver:而createDirectStream不会,数据会通过driver接收. 2.createStream使用 Receiver 源源不断的接收数据并把数据交给 ReceiverSupervisor 处理最终存储为 blocks 作为 RDD 的输入,从 kafka 拉取数据与计算消费数据相互独立:而createDirectStream会在每个 batch 拉取数据并就地消费,到下个 batch 再次拉取消费,周而复始,从 kafka 拉取数据…
spark streaming 对接kafka 有两种方式: 参考: http://group.jobbole.com/15559/ http://blog.csdn.net/kwu_ganymede/article/details/50314901 Approach 1: Receiver-based Approach 基于receiver的方案: 这种方式使用Receiver来获取数据.Receiver是使用Kafka的高层次Consumer API来实现的.receiver从Kafka中获…
场景:使用Spark Streaming接收Kafka发送过来的数据与关系型数据库中的表进行相关的查询操作: Kafka发送过来的数据格式为:id.name.cityId,分隔符为tab zhangsan lisi wangwu zhaoliu MySQL的表city结构为:id int, name varchar bj sz sh 本案例的结果为:select s.id, s.name, s.cityId, c.name from student s join city c on s.city…
基于Receivers的方法 这个方法使用了Receivers来接收数据.Receivers的实现使用到Kafka高层次的消费者API.对于所有的Receivers,接收到的数据将会保存在Spark executors中,然后由Spark Streaming启动的Job来处理这些数据. 然而,在默认的配置下,这种方法在失败的情况下会丢失数据,为了保证零数据丢失,你可以在Spark Streaming中使用WAL日志,这是在Spark 1.2.0才引入的功能,这使得我们可以将接收到的数据保存到WA…
前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏欢迎补充来踩,我会第一时…
当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢失机制.为了体验这个关键的特性,你需要满足以下几个先决条件: 1.输入的数据来自可靠的数据源和可靠的接收器: 2.应用程序的metadata被application的driver持久化了(checkpointed ); 3.启用了WAL特性(Write ahead log). 下面我将简单地介绍这些先决条件. 可靠的数据源和可靠的接收器 对于一些输入数据源(比如Kafka),Spark S…
Kakfa起初是由LinkedIn公司开发的一个分布式的消息系统,后成为Apache的一部分,它使用Scala编写,以可水平扩展和高吞吐率而被广泛使用.目前越来越多的开源分布式处理系统如Cloudera.Apache Storm.Spark等都支持与Kafka集成. Spark streaming集成kafka是企业应用中最为常见的一种场景. 一.安装kafka 参考文档: http://kafka.apache.org/quickstart#quickstart_createtopic 1.安…
转载:https://www.iteblog.com/archives/1322.html Apache Kafka是一个分布式的消息发布-订阅系统.可以说,任何实时大数据处理工具缺少与Kafka整合都是不完整的.本文将介绍如何使用Spark Streaming从Kafka中接收数据,这里将会介绍两种方法:(1).使用Receivers和Kafka高层次的API:(2).使用Direct API,这是使用低层次的KafkaAPI,并没有使用到Receivers,是Spark 1.3.0中开始引入…
来自: https://community.qingcloud.com/topic/344/spark-streaming使用kafka保证数据零丢失 spark streaming从1.2开始提供了数据的零丢失,想享受这个特性,需要满足如下条件: 数据输入需要可靠的sources和可靠的receivers 应用metadata必须通过应用driver checkpoint WAL(write ahead log) 可靠的sources和receivers spark streaming可以通过…
本课分2部分讲解: 第一部分,讲解Kafka的概念.架构和用例场景: 第二部分,讲解Kafka的安装和实战. 由于时间关系,今天的课程只讲到如何用官网的例子验证Kafka的安装是否成功.后续课程会接着讲解如何集成Spark Streaming和Kafka. 一.Kafka的概念.架构和用例场景 http://kafka.apache.org/documentation.html#introdution 1.Kafka的概念 Apache Kafka是分布式发布-订阅消息系统.它最初由Linked…