前言 谷歌推出的NASNet架构,用于大规模图像分类和识别.NASNet架构特点是由两个AutoML设计的Layer组成--Normal Layer and Reduction Layer,这样的效果是不再需要相关专家用human knowledge来搭建卷积网络架构,直接用RNN把Hyperparameter计算出来,这样就实现了网络结构自动学习. 论文:Learning Transferable Architectures for Scalable Image Recognition 强化学…
from:https://blog.csdn.net/xjz18298268521/article/details/79079008 NASNet总结 论文:<Learning Transferable Architectures for Scalable Image Recognition> 注   先啥都不说,看看论文的实验结果,图1和图2是NASNet与其他主流的网络在ImageNet上测试的结果的对比,图3是NASNet迁移到目标检测任务上的检测结果,从这图瞬间感觉论文的厉害之处了,值…
虽然国内必须FQ才能登录YouTube,但想必大家都知道这个网站.基本上算是世界范围内视频领域的最大的网站了,坐拥10亿量级的用户,网站内的视频推荐自然是一个非常重要的功能.本文就focus在YouTube视频推荐的DNN算法,文中不但详细介绍了Youtube推荐算法和架构细节,还给了不少practical lessons and insights,很值得精读一番.下图便是YouTube APP视频推荐的一个例子. 在推荐系统领域,特别是YouTube的所在视频推荐领域,主要面临三个挑战: 规模…
为了优化进化算法在神经网络结构搜索时候选网络训练过长的问题,参考ENAS和NSGA-III,论文提出连续进化结构搜索方法(continuous evolution architecture search, CARS),最大化利用学习到的知识,如上一轮进化的结构和参数.首先构造用于参数共享的超网,从超网中产生子网,然后使用None-dominated排序策略来选择不同大小的优秀网络,整体耗时仅需要0.5 GPU day   来源:晓飞的算法工程笔记 公众号 论文: CARS: Continuous…
使用Elasticsearch 与 NEST 库 构建 .NET 企业级搜索 2015-03-26 dotNET跨平台 最近几年出现的云计算为组织和用户带来了福音.组织对客户的了解达到前所未有的透彻,并能够采用个性化通信锁定客户.用户几乎可以随时随地获取其数据,使其更加易于访问和使用.为了存储所有这些数据,大型数据中心遍布全世界.但是,大数据同样也意味着大挑战. John Naisbitt 在其所著书籍<大趋势:改变我们生活的十个新方向>(华纳书局,1982 年)中的著名引述:“我们淹没在数据…
Vue项目搭建流程 以及 目录结构构建 一个小的Vue项目, 基于微信浏览器的移动端, 做了这么多的练习项目, 这一次准备记录下构建的过程, 以方便以后的调高效率 环境准备 操作系统 我的 windows 7 操作系统, 如果是mac系统的话, 希望我可以在最短的时间内可以进行尝试. 好期待.. 软件环境 Node环境, 是必备环境, 包括模拟服务器的搭建, 到webpack的自动打包. 直接在官网进行下载, 并一步步安装即可 命令行工具, 可以直接使用cmd, 这里使用了一个Git Bash…
为了保持文章系列的连贯性,参考这个文章: DNN结构演进History-LSTM_NN 对于LSTM的使用:谷歌语音转录背后的神经网络 摘要: LSTM使用一个控制门控制参数是否进行梯度计算,以此避免梯度消失或者爆炸. LSTM的优势与不足     LSTM的不足 LSTM的高效截断版本并不能很轻松的解决"强延迟异或"类的问题. LSTM的每个存储单元块需要一个输入门和一个输出门,而这在其他的循环方法中并不是必需的. 常数误差流通过存储单元内部的"Constant Error…
前言 语音识别和动作识别(Action.Activities)  等一些时序问题,通过微分方式可以视为模式识别方法中的变长模式识别问题.语音识别的基元为音素.音节,字母和句子模式是在时间轴上的变长序列:Action的基元为Pose,action的识别为pose的时间序列模式. 我们跟随时间的脚步,试图解释现在.理解过去.甚至预测未来........ 在概率分析的层面,RNN通过循环结构展开处理变长问题,对不同的长度训练不同的概率模型,并以参数的形式存储在网络中,成为天生适合处理时序分析的复杂模型…
论文提出使用进化算法来进行神经网络结构搜索,整体搜索逻辑十分简单,结合权重继承,搜索速度很快,从实验结果来看,搜索的网络准确率挺不错的.由于论文是个比较早期的想法,所以可以有很大的改进空间,后面的很大算法也是基于这种想法进行更好的补充   来源:晓飞的算法工程笔记 公众号 论文: Large-Scale Evolution of Image Classifiers 论文地址:https://arxiv.org/abs/1703.01041 Introduction   论文对当前的进化算法进行少…
摘要:诸多关于人工智能的流行词汇萦绕在我们耳边,比如深度学习 (Deep Learning).强化学习 (Reinforcement Learning).迁移学习 (Transfer Learning),不少人对这些高频词汇的含义及其背后的关系感到困惑,今天就为大家理清它们之间的关系和区别. 一. 深度学习: 深度学习的成功和发展,得益于算力的显著提升和大数据,数字化后产生大量的数据,可通过大量的数据训练来发现数据的规律,从而实现基于监督学习的数据预测. 基于神经网络的深度学习主要应用于图像.文…