SPFA(Shortest Path Faster Algorithm)是Bellman-Ford算法的一种队列实现,减少了不必要的冗余计算. 算法大致流程是用一个队列来进行维护. 初始时将源加入队列. 每次从队列中取出一个元素,并对所有与他相邻的点进行松弛,若某个相邻的点松弛成功,则将其入队. 直到队列为空时算法结束. 这个算法,简单的说就是队列优化的bellman-ford,利用了每个点不会更新次数太多的特点发明的此算法 SPFA--Shortest Path Faster Algorith…
1.图类基本组成 存储在邻接表中的基本项 /** * Represents an edge in the graph * */ class Edge implements Comparable<Edge> { public Vertex dest; //Second vertex in Edge public double cost; //Edge cost public Edge(Vertex d, double c) { dest = d; cost = c; } @Override pu…
[问题描述] 对于一个带负权值边的有向图,实现Bellman-Ford算法,求出从指定顶点s到其余顶点的最短路径,并判断图中是否存在负环. package org.xiu68.exp.exp10; public class Exp10_1 { public static void main(String[] args) { // TODO Auto-generated method stub int[][] edges=new int[][]{ {0,10,0,4,1}, {0,0,0,0,0}…
题意: 给定n个城市的货物买卖价格, 然后给定n-1条道路,每条路有不同的路费, 求出从某两个城市买卖一次的最大利润. 利润 = 卖价 - (买价 + 路费) 样例数据, 最近是从第一个点买入, 第4个点卖出, 利润为8 分析: 1.如果一条边连接(u,v),路费为cost ,城市买卖价格用P( )表示, 那么他的边权就表达为(P(v) - P(u) - cost). 2.我们可以假设有一个起点.他连接着所有的点,边权为0. 3.那么如果从这个点出发的话, 就等于是把所有的城市都尝试作为买入城市…
int spfa_bfs(int s) { ///s表示起点. queue <int> q; memset(d,0x3f,sizeof(d)); ///d数组中存下的就是最短路径(存在的话) d[s] = 0; memset(c,0,sizeof(c));///c数组表示的是某一个节点的入队次数 memset(vis,0,sizeof(vis));///一如既往的标记数组 q.push(s); vis[s] = 1; c[s] = 1; ///顶点入队vis要做标记,另外要统计顶点的入队次数…
参考:https://blog.csdn.net/xunalove/article/details/70045815 有关SPFA的介绍就掠过了吧,不是很赞同一些博主说是国内某人最先提出来,Bellman算法论文后面提及过队列优化的问题. 另外,不建议在没有负边权的情况下使用SPFA算法,某些水(sang)平(xin)很(bing)高(kuang)的出题人可能会出卡SPFA的常数- - 所以,在题目没有提及说有负边权的情况下,请使用堆优化的dijkstra. 下面用图说一下SPFA的运行: #i…
在Bellman-Ford算法之后,我们总算迎来了spfa算法,其实就如同堆优化Dijkstra算法之于朴素版Dijkstra算法,spfa算法仅仅是对Bellman-Ford算法的一种优化,但是在形式上,它看起来特别像堆优化Dijkstra算法罢了! Bellman-Ford算法会遍历所有边并进行松弛操作,然而我们应该知道很多的更新是无用的,所以我们的优化就体现在这里,因为只有那些前一步被更新的点,它所连接的点才有被更新的意义,所以我们会将被更新的点放入一个队列中: 注意点: 1) st数组的…
题意: 给一个混合图,求判断是否有负环的存在,若有,输出YES,否则NO.有重边. 思路: 这是spfa的功能范围.一个点入队列超过n次就是有负环了.因为是混合图,所以当你跑一次spfa时发现没有负环,但是负环仍可能存在,因为有向边! 但是单源最短路也有起点啊,难道穷举起点?不用,负环是必须有某些边是带负权的,那么我们只要穷举负权边的起点就行了,因为单单跑一次spfa不能保证能遍历所有点,但是如果穷举负权边起点还没有找到负环,那么负环不可能存在(剩下的都是正权,怎么可能有负环). //#incl…
差分约束系统,求最小值,跑最长路. 转自:https://www.cnblogs.com/ehanla/p/9134012.html 题解:设sum[x]为前x个咕咕中至少需要赶走的咕咕数,则sum[b]−sum[a−1]>=c表示[a,b]区间至少赶走c只.题目中选择的是最少,我们需要跑最长路,因存在负边,所以以SPFA进行操作. d[v]>=d[u]+w,前面我们可以推出第一个式子sum[b]>=sum[a−1]+c,但是如果只连这些边,整张图连通不起来.我们发现i和i+1存在关系0…
我们先看一下负权环为什么这么特殊:在一个图中,只要一个多边结构不是负权环,那么重复经过此结构时就会导致代价不断增大.在多边结构中唯有负权环会导致重复经过时代价不断减小,故在一些最短路径算法中可能会凭借不断重复经过负权环来得到权和为无穷小的最短路径,但因重复经过边不符合简单路径的定义导致这些算法跑最短路时要避免有负权环的出现. 这类算法说的就是Bellman-ford以及基于它进行优化的spfa了.由于负权环的出现导致这些算法的正确性失效.但这世上没有绝对的废物,我们也可以反过来利用这两种算法对负…