Lightoj1028【计算约数个数】】的更多相关文章

思路: 最终就是求一个数的约数(除了1)对吧. 然后想要枚举sqrt(N)受阻,枚举素数数组受阻,加上prime[i]*prime[i]<=n就好了?那就好了吧. #include <bits/stdc++.h> using namespace std; typedef long long LL; LL prime[1000100]; bool IsPrime[1000100]; int num; void init_prime() { num=0; memset(IsPrime,fal…
对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数. 所以,n以内的反质数即为不超过n的约数个数最多的数. 怎样计算约数个数? 约数个数定理:对于一个大于1正整数n可以分解质因数:n=p1^a1*p2^a2*p3^a3*…*pk^ak,则n的正约数的个数就是(a1+1)(a2+1)(a3+1)…(ak+1) .其中a1.a2.a3…ak是p1.p2.p3,…pk的指数.   所以,只需枚举一个数…
又是恶心的莫比乌斯反演,蒟蒻我又是一脸懵逼的被CXR dalao狂虐. 题目要求\(ans=\sum_{i=1}^n \sum_{j=1}^m d(ij)\),其中\(d(ij)\)表示数\(x\)的约数个数 这道题的一大难点就在于\(d(ij)\)这个函数,它有一个重要的性质: \[d(ij)=\sum_{x|i}\sum_{y|i}[\gcd(i,j)=1]\] 大致的证明思路就是对于\(i,j\)的所有约数,为了避免重复计算,我们只取互质的一对. 知道了这个就是反演的套路了(如果不知道为什…
http://www.lydsy.com/JudgeOnline/problem.php?id=3994 设d(x)为x的约数个数,给定N.M,求 用到的一个结论: 证明: 枚举n的约数i,枚举m的约数j 那么i*j一定是n*m的约数 d(nm)相当于不同的i*j 的个数 若i, j 不互质 设gcd(i,j)= g , 则 i= p*g ,j=q*g 那么i*j 可以 组成两个互质数p*g*g 和 q 的乘积 p*g*g 和 q 也都输n和m的约数 即p*g*g 和 q 也都是合法的i,j 所…
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} a_{\frac n d} \] 双重因子 \[ \sum_{k | n} \sum_{j | k} a_{k, j} = \sum_{k | n} \sum_{j | \frac n k} a_{jk, k} \] \[ \sum_{n | k} \sum_{k | j} a_{k, j} = \…
点此看题面 大致题意: 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^N\sum_{j=1}^Md(i·j)\). 莫比乌斯反演 这是一道莫比乌斯反演题. 一个重要的性质 首先我们要先了解\(d(i·j)\)这个函数的性质: \[d(i,j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)==1]\] 证明: 我也不知道,应该就是枚举\(i\)和\(j\)的约数,求出其中不互质的约数对个数,避免重复计算. 一些定义 按照莫比乌斯反演的常见套路,我们可以定义\(…
Mathematicians love all sorts of odd properties of numbers. For instance, they consider to be an interesting number, since it is the first odd number for which the sum of its divisors is larger than the number itself. To help them search for interest…
题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数据的组数.接下来的T行,每行两个整数N.M. 输出格式 T行,每行一个整数,表示你所求的答案. 输入样例 2 7 4 5 6 输出样例 110 121 提示 1<=N, M<=50000 1<=T<=50000 题解 好神的题[是我太弱吧] 首先上来就伤结论.. 题目所求 \[ans…
https://www.luogu.org/problemnew/show/P3327 不会做. 去搜题解...为什么题解都用了一个奇怪的公式?太奇怪了啊... 公式是这样的: $d(xy)=\sum_{i|x}\sum_{j|y}[(i,j)=1]$ 证明:(转自:https://23613.blog.luogu.org/solution-p3327) 考虑一个质因子p,设x中p的指数为a,y中p的指数为b(指质因数分解结果中指数),那么根据因数个数定理,这个质因子对式子左边的贡献(指使得答案…
Problem Description 设 \(d(x)\) 为 \(x\) 的约数个数,给定 \(N\).\(M\),求 \[ \sum_{i=1}^N \sum_{j=1}^M d(ij) \] Input Format 输入文件包含多组测试数据. 第一行,一个整数 \(T\),表示测试数据的组数. 接下来的 \(T\) 行,每行两个整数 \(N\).\(M\). Output Format \(T\) 行,每行一个整数,表示你所求的答案. Sample Input 2 7 4 5 6 Ou…