Pytorch-tensor的激活函数】的更多相关文章

https://pytorch.org/docs/stable/tensors.html dtype: tessor的数据类型,总共有8种数据类型,其中默认的类型是torch.FloatTensor,而且这种类型的别名也可以写作torch.Tensor. device: 这个参数表示了tensor将会在哪个设备上分配内存.它包含了设备的类型(cpu.cuda)和可选设备序号.如果这个值是缺省的,那么默认为当前的活动设备类型. require_grad: 这个标志表明这个tensor的操作是否会被…
2018.4.25,Facebook 推出了 PyTorch 0.4.0 版本,在该版本及之后的版本中,torch.autograd.Variable 和 torch.Tensor 同属一类.更确切地说,torch.Tensor 能够追踪日志并像旧版本的 Variable 那样运行; Variable 封装仍旧可以像以前一样工作,但返回的对象类型是 torch.Tensor.这意味着我们的代码不再需要变量封装器. 相关链接: PyTorch 重磅更新,不只是支持 Windows PyTorch简…
从官网拷贝过来的,就是做个学习记录.版本 0.4 tensor to numpy a = torch.ones(5) print(a) 输出 tensor([1., 1., 1., 1., 1.]) 进行转换 b = a.numpy() print(b) 输出 [1. 1. 1. 1. 1.] 注意,转换后的tensor与numpy指向同一地址,所以,对一方的值改变另一方也随之改变 a.add_(1) print(a) print(b) numpy to tensor import numpy…
2.3 Activation Function import torch import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt # fake data x = torch.linspace(-5, 5, 200) # 使用torch生成500个等差数据 x = Variable(x) x_np = x.data.numpy() # 转换成 np 类型…
torch.randn torch.randn(*sizes, out=None) → Tensor(张量) 返回一个张量,包含了从标准正态分布(均值为0,方差为 1)中抽取一组随机数,形状由可变参数sizes定义. 参数: sizes (int...) – 整数序列,定义了输出形状 out (Tensor, optinal) - 结果张量 二维 >>> import torch >>> torch.randn(2,3) tensor([[-1.0413, 0.8792…
切片方式与numpy是类似. * a[:2, :1, :, :], * 可以用-1索引. * ::2,表示所有数据,间隔为2,即 start:end:step. *  a.index_select(1,torch.tensor([2])) # 1表示维度,后面是索引(必须是tensor格式,想连续选取可以用tensor.arange()) * 三个点(...): 表示取最大维度的数据,不用输入很多的(:,:,) 比如下面的数据三个点...可以代替中间的维度,并且两边数据是相等的: * torch…
维度扩展 x.unsqueeze(n) 在 n 号位置添加一个维度 例子: import torch x = torch.rand(3,2) x1 = x.unsqueeze(0) # 在第一维的位置添加一个维度 x2 = x.unsqueeze(1) # 在第二维的位置添加一个维度 x3 = x.unsqueeze(2) # 在第三维的位置添加一个维度 print(x1.shape) print(x2.shape) print(x3.shape) >> torch.Size([1, 3, 2…
""" 利用numpy实现一个两层的全连接网络 网络结构是:input ->(w1) fc_h -> relu ->(w2) output 数据是随机出的 """ import numpy as np #维度和大小参数定义 batch_size = 64 input_dim = 1000 output_dim = 10 hidden_dim = 100 # 数据虚拟 (x,y) # 每行是一条数据 输入是64*1000,1000…
一.Pytorch介绍 Pytorch 是Torch在Python上的衍生物 和Tensorflow相比: Pytorch建立的神经网络是动态的,而Tensorflow建立的神经网络是静态的 Tensorflow的高度工业化,它的底层代码很难看懂 官网:http://pytorch.org/ Pytorch主要有两个模块: 一个是torch,一个是torchvision,torch是主模块,用来搭建神经网络.torchvision是辅模块,有数据库,还有一些已经训练好的神经网络等着你直接用比如(…
使用Pytorch搭建模型的步骤及教程 我们知道,模型有一个特定的生命周期,了解这个为数据集建模和理解 PyTorch API 提供了指导方向.我们可以根据生命周期的每一个步骤进行设计和优化,同时更加方便调整各种细节. 模型的生命周期的五个步骤如下: 1.准备数据 2.定义模型 3.训练模型 4.评估模型 5.进行预测 注意:使用 PyTorch API 有很多方法可以实现这些步骤中的每一个,下面是一些使用Pytorch API最简单.最常见或最惯用的方法. 一.准备数据 第一步是加载和准备数据…