题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemshow.php Mean: 略. analyse: 刚开始想了半天都没想出来,数据这么大,难道是有什么公式? 首先我们要知道一点:n!里面所有的0都是2*5得来的,而且不管怎样2的数量一定是>5的数量,所以我们只需要考虑有多少个5就可. 后面也是看了解题报告才知道有这么一个结论. 这是算数基本定理的一个结论: n!的素因子分解中的素数p的幂为:[n/p]+[n/p^2]+[n/p^3]+... 知道…
n!后面有多少个0 Time Limit 1000ms Memory Limit 65536K description 从输入中读取一个数n,求出n! 中末尾0的个数. input 输入有若干行.第一行上有一个整数m.指明接下来的数字的个数.然后是m行,每一行包括一个确定的正整数n,1<=n<=1000000000. output 对输入行中的每个数据n,输出一行,其内容是n!中末尾0的个数. sample_input 3 3 100 1024 sample_output 0 24 253 考…
http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=118 求n!后面有多少个0(1<=n<=1000000000),显然,n!肯定存不下. 2*5=10,所以有多少个2*5就有多少个0,所以只须求n!中因子2和因子5的个数.根据结论有 f(2) = [ n / 2 ] + [ n / 4 ] + [ n / 8 ] + …… f(5) = [ n / 5 ] + [ n / 25 ] + [ n / 125 ] + ………
首先给出一个性质: n!的素因子分解中的素数p的幂为:[ n / p ] + [ n / p² ] + [ n / p³ ] + …… 举例证明: 例如我们有10!,我们要求它的素因子分解中2的幂: 那么,根据公式有 [ 10 / 2 ] + [ 10 / 4 ] + [ 10 / 8 ] (后面例如[10/16]之类的都为0): 显然[ 10 / 2 ] = 5,代表了从1~10中有几个数是2的倍数:2,4,6,8,10:它们每个数都为10!提供了1个2: 之后[ 10 / 4 ] = 2,代…
GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 3379    Accepted Submission(s): 1482 Problem Description Given two positive integers G and L, could you tell me how many solutions of…
Problem : 753 Time Limit : 1000ms Memory Limit : 65536K description 计算N!末尾有多少个0 input 输入数据有多组,每组1行,每行1个数N(10 <= N <=100000000) output 在一行内输出N!末尾0的个数. sample_input 10 100 sample_output 2 24 举例分析一下公式~~摘自baidu 正好看过这个的算法,2*5=10,在一个数N中,因子2出现的次数总比5出现的次数多,…
算数基本定理 每个大于1的正整数都可以被唯一分解为素数的成绩,在乘积中的素因子按照非降序排列 a = p1^a1 * p2^a2 * ... pn^an; b = p1^b1 * p2^b2 * ... pn^bn; gcd(a,b) = p1^min(a1,b1) * p2^min(a2,b2) * ... pn ^ min(an,bn); lcm(a,b) = p1^max(a1,b1) * p2^max(a2,b2) * ... pn ^ max(an,bn); max(gcd(a,b))…
题目大意:f(n)为n的因子和,给出 n 求 1~n 中f(n)为偶数的个数. 题目思路:算数基本定理: n=p1^e1*p2^e1 …… pn^en (p为素数): f(n)=(1+p1+p1^2+p^3……+p^e1)*(1+p2+p2^2……+p2^e2)……*(1+pn+pn^2……+pn^en). 偶数个个奇数相乘仍为奇数,奇数个奇数相乘则为偶数,为了使f(n)为奇数,那么多项式中的每一项都应为奇数. 对于每个多项式内:偶数个奇数相加为偶数,奇数个奇数相加为奇数,为了使多项式为奇数,那…
题目大意:给出面积n,和最短边m,求能形成的矩形的个数(不能为正方形). 题目思路:根据算数基本定理有: 1.每个数n都能被分解为:n=p1^a1*p2^a2*^p3^a3……pn^an(p为素数); 2.n的正因数的个数sum为:sum=(1+a1)*(1+a2)*(1+a3)……(1+an); 最短边为m,若m>=sqrt(n),则无解.所以m最多我10^6,可遍历找出1-m中n的因子,并用sum去减去这类因子的个数. ps:最近一直想去证明算数基本定理,可是感觉能力不够,唉,慢慢来吧. #…
链接:http://poj.org/problem?id=1401 题意:计算N!的末尾0的个数 思路:算数基本定理 有0,分解为2*5,寻找2*5的对数,2的因子个数大于5,转化为寻找因子5的个数.又有算数基本定理: n!在素数因子分解中p的幂为[n/p]+[n/p2]+[n/p3]+... 同时最大次数不会超过logpn.通过换底公式,有ln(n)/ln(p) 代码:(51Nod去掉t循环即可) #include <iostream> #include <math.h> usi…