\(\mathcal{Description}\)   Link.   有 \(n\) 个牛棚,大小为 \(t_{1..n}\),\(n\) 头奶牛,大小为 \(s_{1..n}\),奶牛只能住进不小于自己的牛棚,每个牛棚最多住一头奶牛.求满足不能让更多奶牛住进牛棚的安排方案数,答案对 \((10^9+7)\) 取模.   \(n\le3\times10^3\). \(\mathcal{Solution}\)   把 \(s\) 和 \(t\) 倒一块儿升序排序,大小相同奶牛优先.那么相当于奶牛…
\(\mathcal{Description}\)   Link.   Bessie 在一张含 \(n\) 个结点的有向图上遍历,站在某个结点上时,她必须按下自己手中 \(m\) 个按钮中处于激活状态的一个才能走向其他结点或终止遍历(不能原地等待).初始时,所有按钮都处于激活状态,按下 \(i\) 号按钮时,\(i\) 号按钮变为非激活状态,所有编号 \(<i\) 的按钮被激活.   给定 \(q\) 组形如 \((b_s,s,b_t,t)\) 的询问,求 Bessie 从 \(s\) 出发,第…
\(\mathcal{Description}\)   求出处 owo.   给定一个长度为 \(n\),仅包含小写字母的字符串 \(s\),问是否存在长度为 \(n\),仅包含小写字母的字符串 \(t\),使得 \(t<s\) 且 \(s,t\) 的后缀数组(\(\text{Suffix Array}\),sa[])相同.   \(n\le50\).(建议开到 \(n\le2\times10^5\). \(\mathcal{Solution}\) 奇怪的结论   若存在 \(t\),则存在一个…
\(\mathcal{Description}\)   link.   给定 \(n\) 个水果,每个结点可能有甜度 \(v_i\),或不甜(\(v_i=-1\)).现在把这些水果串成一棵无根树.称一个水果"真甜",当且仅当其本身和至少一个邻接水果是甜的.每个"真甜"水果对树的甜度产生 \(v_i\) 的贡献.求所有甜度不超过 \(maxv\) 的树.   \(n\le40\). \(\mathcal{Solution}\)   令无序地取恰好 \(i\) 个水果使…
[LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. 可是-- 可是如果 Stalin 把自己当作炸弹扔到地堡花园里来了呢? 怀揣着这份小小的希望,元首 Adolf 独自走进了花园.终有一天会重逢的吧,Stalin.或许是在此处,或许是在遥远的彼方. 无论如何,在此之前,好好装点一番花园,编排一段优美的舞步吧! 元首把花园分为 \(n\) 行 \(m\…
0x00 前言 一些吐槽. 考得很变态诶,看每道题平均两秒的时限就知道了... T1 降智了想到后缀懒得打. T2 口胡了假优化,结果和暴力分一样?? T3 黑题还绑点?? \(50 + 80 + 0 = 130\) 沦为平民了www. 0x01 T1 一 道 好 题. 题目描述不在赘述,Link.这道题抽象概括出模型后反而更复杂 )) 首先,不难往 \(dp\) 方向去想. 我们定义 \(dp[i][j]\) 表示处理到第 \(i\) 个语句时,第 \(i\) 个语句处在第 \(j\) 个缩进…
\(\mathcal{Description}\)   Link.   给定一个长为 \(n\) 的非负整数序列 \(\lang a_n\rang\),你可以进行如下操作: 取 \([l,r]\),将其中所有 \(a\) 值 \(-1\): 取 \([l,r]\),将其中奇数下标的 \(a\) 值 \(-1\): 取 \([l,r]\),将其中偶数下标的 \(a\) 值 \(-1\).   求至少需要几次操作使得所有 \(a\) 值变为 \(0\).   \(n\le10^5\),数据组数 \(…
\(\mathcal{Decription}\)   Link.   这是一道通信题.   给定一个 \(n\) 个点 \(m\) 条边的连通无向图与两个限制 \(A,B\).   程序 Anthony 需要用 \(0\sim A-1\) 共 \(A\) 中颜色为无向图的每条边染色.   程序 Catherine 需要帮助一只猫行走:已知猫所在结点邻接每种颜色的边的数量,你需要告诉猫走哪种颜色的边(但不能让它走特定某条),并保证猫从起点 \(s\) 到 \(0\) 所走的距离不超过两点最短距离…
\(\mathcal{Description}\)   Link.   对于非空二叉树 \(T\),定义 \(\operatorname{grow}(T)\) 为所有能通过若干次"替换 \(T\) 的某个叶子为任意非空二叉树"的操作得到的二叉树集合:对于非空二叉树集合 \(\mathscr T\),定义 \(\operatorname{grow}(\mathscr T)=\bigcup_{T\in{\mathscr T}}\operatorname{grow}(T)\).多次询问,每次…
\(\mathcal{Description}\)   OurOJ.   有 \(n\) 个结点,一些结点有染有黑色或白色,其余待染色.将 \(n\) 个结点染上颜色并连接有向边,求有多少个不同(结点颜色不同或边不同)的图,满足: \(\forall \lang u,v\rang\in E,~1\le u<v\le n\): 相邻两点颜色不同的路径条数(包括单点)为奇数.   答案对 \(998244353\) 取模.   \(n\le2\times10^5\). \(\mathcal{Solu…