Atcoder 题面传送门 & 洛谷题面传送门 tsc 考试前 A 的题了,结果到现在才写这篇题解--为了 2mol 我已经一周没碰键盘了,现在 2mol 结束算是可以短暂的春天 短暂地卷一会儿 OI 了(( u1s1 写这篇题解的时候我连题都快忘了... 首先设 \(b_i=\dfrac{A_i}{\sum\limits_{j=0}^{2^n-1}A_j}\),其次碰到这种期望类的题目我们考虑套路地设 \(p_i\) 表示异或得到 \(i\) 的概率,那么有 \(p_i=\sum\limits…
洛谷题面传送门 & Atcoder 题面传送门 12 天以前做的题了,到现在才补/yun 做了一晚上+一早上终于 AC 了,写篇题解纪念一下 首先考虑如果全是 \(-1\)​ 怎么处理.由于我们不关心每个 pair 中的 max 是多少,并且显然每个 pair 的最小值都是两两不同的,因此我们可以考虑有多少个最小值组成的集合,然后答案乘上 \(n!\) 即可.而显然如果我们将"作为某个 pair 的最小值"的位置放上一个左括号,"不作为某个 pair 的最小值&quo…
Atcoder 题面传送门 & 洛谷题面传送门 Yet another AGC F,然鹅这次就没能自己想出来了-- 首先需注意到题目中有一个条件叫做"黑格子组成的连通块是四联通的",这意味着我们将所有黑格都替换为题目中 \(H\times W\) 的标准型之后,黑格(标准型)内部是不会对连通块个数产生贡献的,产生贡献的只可能是黑格与黑格之间的边不产生连通块.如果我们记 \(G_{\text{h}}\) 两个标准型横着拼在一起得到的 \(H\times 2W\) 的图形,\(G_…
洛谷题面传送门 & Atcoder 题面传送门 如何看待 tzc 补他一个月前做的题目的题解 首先根据 SG 定理先手必输当且仅当 \(\text{SG}(1)=\text{SG}(2)\).考虑从反面入手,拿总情况数减去 \(\text{SG}(1)=\text{SG}(2)\) 的方案数. 怎么求 \(\text{SG}(1)=\text{SG}(2)\) 的方案数呢?看到这类数据范围巨小并且要你求"有多少组边集满足保留边集中的边后符合 xxx 条件"的题目,果断选择对点集…
C - Cleaning 题目连接: http://agc010.contest.atcoder.jp/tasks/agc010_c Description There is a tree with N vertices, numbered 1 through N. The i-th of the N−1 edges connects vertices ai and bi. Currently, there are Ai stones placed on vertex i. Determine…
Atcoder 题面传送门 洛谷题面传送门 又是道思维题,又是道把我搞自闭的题. 首先考虑对于固定的 \(a_1,a_2,\dots,a_n;b_1,b_2,\dots,b_m\) 怎样判定是否合法,我们对于回文串对应的点之间连边,表示它们必须相等,这样可以形成一张图,如果该图连通那么证明这两个数组合法,反之不合法,正确性显然. 注意到对于每个 \(a_i\) 会连出 \(\lfloor\dfrac{a_i}{2}\rfloor\) 条边,换句话说,如果 \(a_i\) 是偶数那么全部 \(\d…
题目传送门 典型的 Atcoder 风格的计数 dp. 题目可以转化为每次在序列中插入一个 \([1,k]\) 的数,共操作 \(n\) 次,满足后一个序列的字典序严格大于前一个序列,问有多少种操作序列. 显然相同的数可以合并,因为在由相同的数 \(x\) 组成的数段中,在任何位置插入 \(x\),得到的序列都是相同的. 再考虑字典序的问题.你只能序列末尾或者一个 \(<x\) 的数前面插入 \(x\),否则得到的序列的字典序就会 \(\geq\) 原序列的字典序. 但这样问题还是比较棘手,我们…
Atcoder 题面传送门 & 洛谷题面传送门 震惊,我竟然能独立切掉 AGC E 难度的思维题! hb:nb tea 一道 感觉此题就是找性质,找性质,再找性质( 首先看到排列有关的问题,我们可以很自然地将排列拆成一个个置换环,即我们建一张图 \(G\),对于 \(i\in[1,n]\) 连边 \(i\to p_i\),那么题目的要求就可以转化为:对于每个点 \(i\),它置换环上下一步或者下下步为 \(a_i\). 做出这个简单的转化后,就可以发现一个非常 trivial 的性质: Obse…
题目传送门:https://agc002.contest.atcoder.jp/tasks/agc002_f 题目翻译 你有\(n*k\)个球,这些球一共有\(n\)种颜色,每种颜色有\(k\)个,然后你可以随意把它们放成一行.放好后把每个颜色最左边的球染成\(n+1\)号颜色,问这样可以搞出多少种不同的颜色序列. 题解 最近没休息好,状态不好,而且这还是我最不擅长的计数题,跪了跪了. 你们去看别人的题解吧,我也讲不清楚,这里只有丑逼代码可以看. 时间复杂度:\(O(nk)\) 空间复杂度:\(…
题目传送门:https://agc017.contest.atcoder.jp/tasks/agc017_f 题目大意: 找出\(m\)个长度为\(n\)的二进制数,定义两个二进制数的大小关系如下:若\(a<b\),则设\(a_i\)表示\(a\)的二进制下第\(i\)位(从左往右)的数,有\(a_i\leqslant b_i,i\in[1,n]\) 现需要满足每个二进制数需要小于其之后的二进制数,并且给出一些性质,满足第\(A_j\)个二进制数的第\(B_j\)位(从左往右)必须要为\(C_i…