NVIDIA Jarvis:一个GPU加速对话人工智能应用的框架 Introducing NVIDIA Jarvis: A Framework for GPU-Accelerated Conversational AI Applications 实时会话人工智能是一项复杂而富有挑战性的任务.为了允许与最终用户进行实时.自然的交互,模型需要在300毫秒内完成计算.自然的相互作用具有挑战性,需要多模态的感觉整合.模型管道也很复杂,需要跨多个服务进行协调: 自动语音识别(ASR) 自然语言理解(NLU…
一个Python 的 AI Chatbot框架 建立一个聊天室可以听起来很棒,但它是完全可行的. IKY是一个内置于Python中的AI动力对话对话界面. 使用IKY,很容易创建自然语言会话场景,无需编码工作. 平滑的UI使得轻松创建和训练机器人的对话,并且随着从与人们的对话中学习而不断变得更聪明. IKY可以通过将API与该平台集成在您所选择的任何渠道(如Messenger,Slack等)上. 您不需要成为人工智能的专家来创建具有人工智能的真棒聊天机. 有了这个基本的项目,你可以随时创建一个人…
深度学习“引擎”之争:GPU加速还是专属神经网络芯片? 深度学习(Deep Learning)在这两年风靡全球,大数据和高性能计算平台的推动作用功不可没,可谓深度学习的“燃料”和“引擎”,GPU则是引擎的引擎,基本所有的深度学习计算平台都采用GPU加速.同时,深度学习已成为GPU提供商NVIDIA的一个新的战略方向,以及3月份的GTC 2015的绝对主角. 那么,GPU用于深度学习的最新进展如何?这些进展对深度学习框架有哪些影响?深度学习开发者应该如何发挥GPU的潜力?GPU与深度学习结合的前景…
[源码解析] NVIDIA HugeCTR,GPU版本参数服务器 --(1) 目录 [源码解析] NVIDIA HugeCTR,GPU版本参数服务器 --(1) 0x00 摘要 0x01 背景 1.1 推荐系统中的点击率估计 1.2 点击率估算训练的挑战 0x02 HugeCtr 0x03 架构 3.1 CTR DL 模型 3.2 HugeCTR 架构 3.3 基于GPU的参数服务器 0x04 核心功能 4.1 模型并行训练 4.1.1 in-memory GPU hash table 4.1.…
[源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (5) 嵌入式hash表 目录 [源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (5) 嵌入式hash表 0x00 摘要 0x01 前文回顾 0x02 Embedding 2.1 概念 2.1.1 One-hot 编码 2.1.2 分布式表示 2.1.3 推荐领域 2.2 Lookup 2.3 嵌入层 2.3.1 点积 2.3.2 全连接层 2.3.3 元数据信息 2.3.4 经典架构 2.3.4.1…
构建可扩展的GPU加速应用程序(NVIDIA HPC) 研究人员.科学家和开发人员正在通过加速NVIDIA GPU上的高性能计算(HPC)应用来推进科学发展,NVIDIA GPU具有处理当今最具挑战性的科学问题的计算能力.从计算科学到人工智能,GPU加速应用正在带来突破性的科学发现.流行的语言如C.C++.FORTRAN和Python正被用来开发.优化和部署这些应用程序. 面向HPC的GPU程序设计 NVIDIA GPU可以编程得很像CPU.从替换GPU优化的数学库开始.使用标准C++并行算法和…
0 引言 Marvin是普林斯顿视觉实验室(PrincetonVision)于2015年提出的轻量化GPU加速的多维深度学习网络框架.该框架采用纯c/c++编写,除了cuda和cudnn以外,不依赖其他库,编译非常简单,功能也相当强大,用于深度神经网络的快速原型开发非常好用.缺点在于没有提供API,所有的代码集中在marvin.hpp一个文件中,读起来非常困难.好在提供了视频格式的PPT,对框架和代码进行解读.下面将基于官网视频/ppt对该框架进行介绍. 1 相关链接 不想看我翻译的同学可以直接…
windows 10 64bit下安装Tensorflow+Keras+VS2015+CUDA8.0 GPU加速 原文见于:http://www.jianshu.com/p/c245d46d43f0 作者 xushiluo 关注 2016.12.21 20:32* 字数 3096 阅读 12108评论 18喜欢 19 写在前面的话 2016年11月29日,Google Brain 工程师团队宣布在 TensorFlow 0.12 中加入初步的 Windows 支持.但是目前只支持64位,而且Py…
Numba:高性能计算的高生产率 在这篇文章中,笔者将向你介绍一个来自Anaconda的Python编译器Numba,它可以在CUDA-capable GPU或多核cpu上编译Python代码.Python通常不是一种编译语言,你可能想知道为什么要使用Python编译器.答案当然是:运行本地编译的代码要比运行动态的.解译的代码快很多倍.Numba允许你为Python函数指定类型签名,从而在运行时启用编译(这就是“Just-in-Time”,即时,也可以说JIT编译).Numba动态编译代码的能力…
AI解决方案:边缘计算和GPU加速平台 一.适用于边缘 AI 的解决方案 AI 在边缘蓬勃发展.AI 和云原生应用程序.物联网及其数十亿的传感器以及 5G 网络现已使得在边缘大规模部署 AI 成为可能.但它需要一个可扩展的加速平台,能够实时推动决策,并让各个行业都能为行动点(商店.制造工厂.医院和智慧城市)提供自动化智能.这将人.企业和加速服务融合在一起,从而使世界变得"更小". 更紧密. 适用于各行各业的边缘 AI 解决方案 卓越购物体验 借助 AI 驱动的见解,各地的大型零售商可让…