https://mlnote.wordpress.com/2015/12/16/python%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%AE%9E%E8%B7%B5%E4%B8%8Ekaggle%E5%AE%9E%E6%88%98-machine-learning-for-kaggle-competition-in-python/ Author: Miao Fan (范淼), Ph.D. candidate on Computer Science. Affil…
机器学习是近年来渐趋热门的一个领域,同时Python 语言经过一段时间的发展也已逐渐成为主流的编程语言之一.<Python机器学习实践指南>结合了机器学习和Python 语言两个热门的领域,通过利用两种核心的机器学习算法来将Python 语言在数据分析方面的优势发挥到极致. 共有10 章.第1 章讲解了Python 机器学习的生态系统,剩余9 章介绍了众多与机器学习相关的算法,包括各类分类算法.数据可视化技术.推荐引擎等,主要包括机器学习在公寓.机票.IPO 市场.新闻源.内容推广.股票市场.…
Python机器学习实践指南 目 录 第1章Python机器学习的生态系统 1 1.1 数据科学/机器学习的工作 流程 2 1.1.1 获取 2 1.1.2 检查和探索 2 1.1.3 清理和准备 3 1.1.4 建模 3 1.1.5 评估 3 1.1.6 部署 3 1.2 Python库和功能 3 1.2.1 获取 4 1.2.2 检查 4 1.2.3 准备 20 1.2.4 建模和评估 26 1.2.5 部署 34 1.3 设置机器学习的环境 34 1.4 小结 34 第2章构建应用程序,发…
文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 转自 | 法纳斯特(公众号ID:walker398) 作者 | 小F 决策树呈树形结构,是一种基本的回归和分类方法. 决策树模型的优点在于可读性强.分类速度快. 下面通过从「译学馆」搬运的两个视频,来简单了解下决策树. 最后来实战一波,建立一个简单的决策树模型. 01决策树算法 本次主要涉及两类决策树,Quinlan系列决策树和CART决策树. 前者涉及的算法包括ID3算法.C4.5算法及C5.0算…
16S数据质控流程,一次下机lane包括很多的项目,每个项目有独立的合同号,一个项目可能包含16S或者ITS两种,通过一个完整的pipeline,将上游拆分好的数据全部整理成可以直接分析的数据.原本这个工作是通过并行的sge实现,是运行层面的并行,现在在程序层面实现并行处理,可以脱离sge系统工作. import os import sys import re import time import collections from multiprocessing import Process,J…
机器学习概念概念 机器 学习是计算机科学的一个分支,从模式识别.人工智能和计算学习理论发展而来,我们可以将其作为数据挖掘的工具 侧重用于数据分析方法理解给定的数据 目的是:开发能够从先前观测的数据,通过可调整的参数进行学习的 程序,为了改善预测结果,将参数设计为可自动调整的 常见应用:垃圾邮件过滤器.搜索引擎,光学字符识别(OCR)和计算机视觉 任何一个问题都始于一个数据集,未知数据的特征根据数据集来预测:为了解决问题选用的机器学习算法用数学模型来描述,模型 包含一些参数,需要在训练集上调试.训…
<Python 机器学习及实践–从零开始通往kaggle竞赛之路>很基础 主要介绍了Scikit-learn,顺带介绍了pandas.numpy.matplotlib.scipy. 本书代码基于python2.x.不过大部分可以通过修改print()来适应python3.5.x. 提供的代码默认使用 Jupyter Notebook,建议安装Anaconda3. 最好是到https://www.kaggle.com注册账号后,运行下第四章的代码,感受下. 监督学习: 2.1.1分类学习(Cla…
点击获取提取码:i5nw Python机器学习及实践面向所有对机器学习与数据挖掘的实践及竞赛感兴趣的读者,从零开始,以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领读者熟悉并且掌握当下流行的机器学习.数据挖掘与自然语言处理工具,如Scikit-learn.NLTK.Pandas.gensim.XGBoost.Google Tensorflow等. 全书共分4章.第1章简介篇,介绍机器学习概念与Python编程知识:第2章基础篇,讲述如何使用Scikit-lear…
转: <PYTHON机器学习及实践-从零开始通往KAGGLE竞赛之路> 分享下载 书籍信息 书名: PYTHON机器学习及实践-从零开始通往KAGGLE竞赛之路 标签: PYTHON机器学习及实践-从零开始通往KAGGLE竞赛之路,免费,程序员书籍,编程,pdf,电子书 下载地址 https://590m.com/file/18765121-475905678 转: <PYTHON机器学习及实践-从零开始通往KAGGLE竞赛之路> 分享下载…
目录 第二章 2.3章末小结 @(Python机器学习及实践-----从零开始通往Kaggle竞赛之路) 第二章 2.3章末小结 1 机器学习模型按照使用的数据类型,可分为监督学习和无监督学习两大类. 监督学习主要包括分类和回归的模型. 分类:线性分类,支持向量机(SVM),朴素贝叶斯,k近邻,决策树,集成模型(随机森林(多个决策树)等). 回归:线性回归,支持向量机(SVM),k近邻,回归树,集成模型(随机森林(多个决策树)等). 无监督学习主要包括:数据聚类(k-means)和数据降维(主成…