本章开始学习第一个有监督学习模型--线性回归模型."线性"在这里的含义仅限定了模型必须是参数的线性函数.而正如我们接下来要看到的,线性回归模型可以是输入变量\(x\)的非线性函数. 书中首先对回归问题给出了一个简短的不那么正式的定义: Given a training data set comprising \(N\) observations \(\{x_n\}\), where \(n = 1, ... , N\), together with corresponding targ…
一.最小化误差函数拟合 正则化( regularization )技术涉及到给误差函数增加一个惩罚项,使得系数不会达到很大的值.这种惩罚项最简单的形式采用所有系数的平方和的形式.这推导出了误差函数的修改后的形式: 在效果上, λ 控制了模型的复杂性,因此决定了过拟合的程度. 二.贝叶斯曲线拟合 1.正态分布( normal distribution )或者高斯分布( Gaussian distribution ) 对于一元实值变量 x ,高斯分布被定义为: 它由两个参数控制:\(μ\) ,被叫做…