topcoder srm 500 div1】的更多相关文章

problem1 link 如果decisions的大小为0,那么每一轮都是$N$个人.答案为0. 否则,如果答案不为0,那么概率最大的一定是一开始票数最多的人.因为这个人每一轮都在可以留下来的人群中. 假设第一轮之后剩下$r_{1}$个人,那么第二轮之后将剩下$r_{2}=N$%$r_{1}$个人.不妨设$r_{1}<N$.第一轮能够使得$r_{1}$个人的票数答案一样多且最多(设这个票数为$x$),那么这个x一定是大于等于单纯由decisions决定出的最大值.而现在$r_{1}<N$了,…
Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*......*pn,我们假设p0,p1,...,pn是单调不降的,那么v里存储的是下标为偶数 的N的质因数p0,p2,p4,...,p(2k).现在要求写一个程序,返回一个vector<long long>ans; ans里存储的是p0,p1,p2,...,pn. Limits Time Limit(m…
Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结论,将点按照权值大小排序后,从大到小加点的充要条件是完美匹配大小 \(+1\) .考虑如果不是按照这种方式加点的,必然能找到一个没有被匹配的点替换掉一个在匹配中但是权值比它小的点,答案一定会变大. 于是我们可以从大到小枚举点,如果能加进去且完美匹配大小增加就加入这个点,否则就不加. solutoin…
题意 [题目链接]这怎么发链接啊..... 有\(n\)张符卡排成一个队列,每张符卡有两个属性,等级\(li\)和伤害\(di\). 你可以做任意次操作,每次操作为以下二者之一: 把队首的符卡移动到队尾. 使用队首的符卡,对敌人造成\(d_i\)点伤害,并丢弃队首的\(l_i\)张符卡(包括你所使用的符卡).如果队列不足\(l_i\)张符卡那么你不能使用. 求出造成的伤害的总和的最大值. \(1<=n<=50, 1<=li<=50, 1<=di<=10000\) Sol…
题意  给定一个长度不超过$5*10^{6}$的数列和不超过$100$个询问,每次询问这个数列第$k$小的数,返回所有询问的和 内存限制很小,小到不能存下这个数列.(数列以种子的形式给出) 时限$10s$,内存限制$13MB$ 我自己YY的分治缩小答案上下界范围第三个样例要跑$90s$左右,果断放弃 根据题目给出的条件我们知道每一个数的范围都在$[0, 10^{9}+6]$里. 那么我们开一个大小为$32000$的数组,把$[0, 10^{9}+6]$分成$32000$个大小相同的块. 然后先遍…
problem1 link 二分答案,然后计算总时间.跟$T$比较确定要增大答案还是减小答案. problem2 link 可以看作是以‘*’所在位置为根的树.所以每个非根节点都有一个父节点. 那么每个非根结点$x$都可以表示其根结点$y$的函数,,类型为$x=p+qy$.比如说有三个节点$x,y,z$,$y$是$x$的父节点,$z$是$y$的父节点,那么有$x=1+y,y=1+\frac{1}{2}(x+z)=1+\frac{1}{2}(1+y+z)\rightarrow y=3+z$.也就是…
problem1 link 倒着想.每次添加一个右括号再添加一个左括号,直到还原.那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号. problem2 link 令$h(x)=\sum_{i=1}^{x}g(i)$,那么答案为$h(R)-h(L-1)$.对于$h(x)$: (1)如果$x\leq K$,那么$h(x)=0$ (2)否则对于$[K+1,x]$之间的所有偶数来说,对答案的贡献为$even+h(\frac{x}{2})-h(\frac{K}{2})$,其中$e…
1.给定一个迷宫,点号表示不可行,井号表示可行.现在可以改变其中的一些井号的位置.问最少改变多少个井号可以使得从左上角到右下角存在路径. 思路:设高为$n$,宽为$m$,若井号的个数$S$小于$n+m-1$则无解.否则最多改变$n+m-1$个井号即可.令$f[x][y][k]$表示现在到达位置$(x,y)$且中途经过的点号格子数为$k$时最少经过了多少井号格子.这样进行搜索即可.搜过过程中,应该满足$k\leq n+m-1$且$k+f[x][y][k]\leq S$. #include <ios…
Problem Statement      You are given the ints perimeter and area. Your task is to find a triangle with the following properties: The coordinates of each vertex are integers between 0 and 3000, inclusive. The perimeter of the triangle must be exactly…
打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加就会加D[i],如果减就会减D[i],但是如果rating小于0了就变成0,这个人不太喜欢比较厉害的颜色,所以他不能连续两次rating大于等于2200,求颜色变化的最多个数,保证比赛最多50场,D[i]<=10^9. 这套题还是很难的,所以我们来好好分析. 首先,样例0告诉我们贪心什么都是假的,不…