回归树(Regression Tree)】的更多相关文章

一.CART分类与回归树 资料转载: http://dataunion.org/5771.html        Classification And Regression Tree(CART)是决策树的一种,并且是非常重要的决策树,属于Top Ten Machine Learning Algorithm.顾名思义,CART算法既可以用于创建分类树(Classification Tree),也可以用于创建回归树(Regression Tree).模型树(Model Tree),两者在建树的过程稍…
http://blog.csdn.net/pipisorry/article/details/60776803 单决策树C4.5由于功能太简单.而且非常easy出现过拟合的现象.于是引申出了很多变种决策树.就是将单决策树进行模型组合,形成多决策树,比較典型的就是迭代决策树GBRT和随机森林RF. 在近期几年的paper上,如iccv这样的重量级会议.iccv 09年的里面有不少文章都是与Boosting和随机森林相关的. 模型组合+决策树相关算法有两种比較主要的形式:随机森林RF与GBDT,其他…
目录 回归树 理论解释 算法流程 ID3 和 C4.5 能不能用来回归? 回归树示例 References 说到决策树(Decision tree),我们很自然会想到用其做分类,每个叶子代表有限类别中的一个.但是对于决策树解决回归问题,一直是一知半解,很多时候都是一带而过. 对于一个回归问题,我们第一时间想到的可能就是线性回归(linear regression),当线性回归不好的时候,可能想着用 SVR(Support Vector Regression)试试.但回归树(regression…
How do decision trees for regression work? 决策树模型既可以求解分类问题(对应的就是 classification tree),也即对应的目标值是类别型数据,也可以应用于回归预测问题的求解(regression tree),其输出值则可以是连续的实数值.一般市面上介绍决策树模型的书及相关的教学视频,通常只关注决策树在分类问题上的求解,而一笔带过对回归树的介绍.事实上,二者的构建过程也确实没有本质的不同,二者的差异主要集中在划分属性时的划分原则上. 1.…
常见的一种决策树算法是ID3,ID3的做法是每次选择当前最佳的特征来分割数据,并按照该特征所有可能取值来切分,也就是说,如果一个特征有四种取值,那么数据将被切分成4份,一旦按某特征切分后,该特征在之后的算法执行过程中将不会在起作用,这种切分方法比较迅速,但是一个比较明显的缺点是不能直接处理连续型的特征,只有事先将连续型的数据转换成离散型才能再ID3算法中使用. CART(Classification And Regression Tree)算法采用一种二分递归分割的技术,将当前的样本集分为两个子…
CART:Classification and regression tree,分类与回归树.(是二叉树) CART是决策树的一种,主要由特征选择,树的生成和剪枝三部分组成.它主要用来处理分类和回归问题,下面对分别对其进行介绍. 1.回归树:使用平方误差最小准则 训练集为:D={(x1,y1), (x2,y2), …, (xn,yn)}. 输出Y为连续变量,将输入划分为M个区域,分别为R1,R2,…,RM,每个区域的输出值分别为:c1,c2,…,cm则回归树模型可表示为: 则平方误差为: 假如使…
顾名思义,决策树model是树形结构,在分类中,表示基于特征对实例进行分类的过程.可以认为是"if-else"的合集,也可以认为是特征空间,类空间上条件概率分布.主要优点是分类速度快,可读性好.在学习时(training)根据loss function最小化原则建立决策树model,预测时对新数据利用决策树进行分类.常包括三个步骤*:特征选择,决策树生成,决策树剪枝.思想来源是1986年Quinlan提出的ID3算法,1993年C4.5算法,Breiman在1984年提出的CART算法…
一.CART决策树模型概述(Classification And Regression Trees)   决策树是使用类似于一棵树的结构来表示类的划分,树的构建可以看成是变量(属性)选择的过程,内部节点表示树选择那几个变量(属性)作为划分,每棵树的叶节点表示为一个类的标号,树的最顶层为根节点. 决策树是通过一系列规则对数据进行分类的过程.它提供一种在什么条件下会得到什么值的类似规则的方法.​​决策树算法属于有指导的学习,即原数据必须包含预测变量和目标变量.决策树分为分类决策树(目标变量为分类型数…
决策树的剪枝 决策树为什么要剪枝?原因就是避免决策树“过拟合”样本.前面的算法生成的决策树非常的详细而庞大,每个属性都被详细地加以考虑,决策树的树叶节点所覆盖的训练样本都是“纯”的.因此用这个决策树来对训练样本进行分类的话,你会发现对于训练样本而言,这个树表现堪称完美,它可以100%完美正确得对训练样本集中的样本进行分类(因为决策树本身就是100%完美拟合训练样本的产物). 但是,这会带来一个问题,如果训练样本中包含了一些错误,按照前面的算法,这些错误也会100%一点不留得被决策树学习了,这就是…
一.决策树模型组合 单决策树C4.5由于功能太简单,并且非常容易出现过拟合的现象,于是引申出了许多变种决策树,就是将单决策树进行模型组合,形成多决策树,比较典型的就是迭代决策树GBRT和随机森林RF. 在最近几年的paper上,如iccv这种重量级会议,iccv 09年的里面有不少文章都是与Boosting和随机森林相关的.模型组合+决策树相关算法有两种比较基本的形式:随机森林RF与GBDT,其他比较新的模型组合+决策树算法都是来自这两种算法的延伸.        核心思想:其实很多"渐进梯度&…