题目链接: https://vjudge.net/problem/POJ-3421 题目大意: 给你一个数X,将X分解成1~X的因子数列,前一个数可以整数后一个数,求满足条件的最大链长以及有多少条这样长的链. 思路一: 自己的解答: 首先求出所有的因子,排序,然后定义一个length数组和tot数组,length[i]表示从第i个因子到最后一个因子的最大链长,tot[i]表示第i个因子到最后一个因子的最大链长的种类,要求length[0]和tot[0] 已知length[last] = 0,to…
题目链接 题意 : 实际上可以转化一下题意 要求求出用三个不同元素的字符集例如 { 'A' .'B' .'C' } 构造出长度为 n 且不包含 AAA.BBB CCC.ACB BCA.CAC CBC 这其中任意一个字符串的方案数 分析 : 方法一 (BM 求线性递推) 直接暴力出前 10 项的答案.然后猜它其实可以由线性递推递推而来 丢进杜教的 BM 模板里面就可以直接求出第 N 项了 实际上这个可以不用猜.这种不包含某些串的题目 如果你做过类似的.就会知道实际上是可以构造出一个矩阵然后快速幂…
BM求线性递推模板(杜教版) BM求线性递推是最近了解到的一个黑科技 如果一个数列.其能够通过线性递推而来 例如使用矩阵快速幂优化的 DP 大概都可以丢进去 则使用 BM 即可得到任意 N 项的数列元素 参考博客 : 暂时没有. 找到了一个.希望你能看懂吧.click here 以下是 2018 焦作网络赛 L 题 AC 代码.可做模板 #include <cstdio> #include <cstring> #include <cmath> #include <…
分析: 我们可以写把转移矩阵A写出来,然后求一下它的特征多项式,经过手动计算应该是这样的p(x)=$x^k-\sum\limits_{i=1}^ka_i*x^{k-i}$ 根据Cayley-Hamilton定理可得,p(A)=0 他表示$A^n = f(A) * p(A) + g(A)$ 第一项的值是0,所以即$A^n=g(A)$,其中f(A) g(A)都是关于A的多项式,f(A)是多项式除法的商,g(A)是余数 我们考虑$x^n$这个多项式,我们去求出它对于$p(A)$的余数多项式$g(A)$…
BM算法求求线性递推式   P5487 线性递推+BM算法   待AC.   Poor God Water   // 题目来源:ACM-ICPC 2018 焦作赛区网络预赛 题意   God Water喜欢吃Meat, Fish 和 Chocolate,每个小时他会吃一种食物,但有些吃的顺序是危险/不高兴的.求在N小时内他的饮食方案有多少种不同组合.在连续三小时内这些组合是不可行的: unhappy : MMM FFF CCC dangerous : MCF FCM CMC CFC   思路1…
推荐网址,下面是别人的解题报告: http://www.cnblogs.com/chasetheexcellence/archive/2012/04/16/poj2441.html 里面有状态压缩论文的链接,可以看看. 该解题报告中用的是二维数组,但是很显然的是,递推式中的下一行只与上一行有关,类似于最长公共子序列,可以用滚动数组,在滚动数组后发现只用一个数组就可以了.至于是不是要和0-1背包一样得按从大到小的顺序,我没有,我的状态是从小到大的顺序,但是也AC了. 如果不用滚动数组,会超内存.…
题面 \(solution:\) 首先做个推销:带负数的压位高精度(加减乘+读写) 然后:由 \(N\) 个节点组成的无向图的总数为: \(2^{N*(N-1)/2}\) (也就是说这个图总共有 \(N*(N-1)/2\) 条边,每一条边选或不选就可以得出来) 然后我们直接开始分析题目,因为这道题需要求无向连通图的方案数,这道题似乎也不是一个结论题, \(wch\) 决定去找找规律,是不是 \(n\) 和 \(n-1\) 有什么关系,但是 $wch $ 发现他打不出表. 然后 $wch $ 想到…
https://vijos.org/p/1067 守望者-warden,长期在暗夜精灵的的首都艾萨琳内担任视察监狱的任务,监狱是成长条行的,守望者warden拥有一个技能名叫“闪烁”,这个技能可以把她传送到后面的监狱内查看,她比较懒,一般不查看完所有的监狱,只是从入口进入,然后再从出口出来就算完成任务了. 描述 头脑并不发达的warden最近在思考一个问题,她的闪烁技能是可以升级的,k级的闪烁技能最多可以向前移动k个监狱,一共有n个监狱要视察,她从入口进去,一路上有n个监狱,而且不会往回走,当然…
定义 若数列 \(\{a_i\}\) 满足 \(a_n=\sum_{i=1}^kf_i \times a_{n-i}\) ,则该数列为 k 阶齐次线性递推数列 可以利用多项式的知识做到 \(O(k\log k \log n)\) 求第 n 项. 如果给出前 k 项,想知道 \(f_i\) ,可以在 \(O(k^2)\) 的时间内求出. 求 \(f_i\) 有 Berlekamp Massey 算法和 Reeds Sloane 算法,具体算法思想是啥咱也不知道,咱只知道这东西放进去就能跑. 前者需…
题目大意 有一个 \(n\) 个点的环,你要用 \(m\) 中颜色染这 \(n\) 个点. 要求连续 \(m\) 个点的颜色不能是 $1 \sim m $ 的排列. 两种环相同当且仅当这两个环可以在旋转之后变得一模一样. 求方案数对 \({10}^9+7\) 取模的结果. \(n\leq {10}^9,m\leq 7\) 题解 考虑 polya 定理,记 \(f(n)\) 为 \(n\) 个点的答案,\(g(n)\) 为 \(n\) 个点不考虑旋转的答案.那么就有 \[ \begin{align…