转自:https://zhuanlan.zhihu.com/p/31921944 前言:行人重识别(Person Re-identification)也称行人再识别,本文简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术.广泛被认为是一个图像检索的子问题.给定一个监控行人图像,检索跨设备下的该行人图像. 在监控视频中,由于相机分辨率和拍摄角度的缘故,通常无法得到质量非常高的人脸图片.当人脸识别失效的情况下,ReID就成为了一个非常重要的替代品技术.ReID有一个非常…
摘要:人脸性别识别是人脸识别领域的一个热门方向,本文详细介绍基于深度学习的人脸性别识别系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面.在界面中可以选择人脸图片.视频进行检测识别,也可通过电脑连接的摄像头设备进行实时识别人脸性别:可对图像中存在的多张人脸进行性别识别,可选择任意一张人脸框选显示结果,检测速度快.识别精度高.博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接.本博文目录如下: 目录 前言 1. 效果演示…
上一篇提到文字数据集的合成,现在我们手头上已经得到了3755个汉字(一级字库)的印刷体图像数据集,我们可以利用它们进行接下来的3755个汉字的识别系统的搭建.用深度学习做文字识别,用的网络当然是CNN,那具体使用哪个经典网络?VGG?RESNET?还是其他?我想了下,越深的网络训练得到的模型应该会更好,但是想到训练的难度以及以后线上部署时预测的速度,我觉得首先建立一个比较浅的网络(基于LeNet的改进)做基本的文字识别,然后再根据项目需求,再尝试其他的网络结构.这次任务所使用的深度学习框架是强大…
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gpu加速库). 用到了一个开源的深度学习模型:VGG model. 最终的效果是很赞的,识别一张人脸的速度是0.039秒,而且最重要的是:精度高啊!!! CPU:intel i5-4590 GPU:GTX 980 系统:Win 10 OpenCV版本:3.1(这个无所谓) Caffe版本:Micros…
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gpu加速库). 用到了一个开源的深度学习模型:VGG model. 最终的效果是很赞的,识别一张人脸的速度是0.039秒,而且最重要的是:精度高啊!!! CPU:intel i5-4590 GPU:GTX 980 系统:Win 10 OpenCV版本:3.1(这个无所谓) Caffe版本:Micros…
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gpu加速库). 用到了一个开源的深度学习模型:VGG model. 最终的效果是很赞的,识别一张人脸的速度是0.039秒,而且最重要的是:精度高啊!!! CPU:intel i5-4590 GPU:GTX 980 系统:Win 10 OpenCV版本:3.1(这个无所谓) Caffe版本:Micros…
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gpu加速库). 用到了一个开源的深度学习模型:VGG model. 最终的效果是很赞的,识别一张人脸的速度是0.039秒,而且最重要的是:精度高啊!!! CPU:intel i5-4590 GPU:GTX 980 系统:Win 10 OpenCV版本:3.1(这个无所谓) Caffe版本:Micros…
上一篇提到文字数据集的合成,现在我们手头上已经得到了3755个汉字(一级字库)的印刷体图像数据集,我们可以利用它们进行接下来的3755个汉字的识别系统的搭建.用深度学习做文字识别,用的网络当然是CNN,那具体使用哪个经典网络?VGG?RESNET?还是其他?我想了下,越深的网络训练得到的模型应该会更好,但是想到训练的难度以及以后线上部署时预测的速度,我觉得首先建立一个比较浅的网络(基于LeNet的改进)做基本的文字识别,然后再根据项目需求,再尝试其他的网络结构.这次任务所使用的深度学习框架是强大…
原文链接:https://www.52ml.net/20287.html 这篇博文主要讲了深度学习在目标检测中的发展. 博文首先介绍了传统的目标检测算法过程: 传统的目标检测一般使用滑动窗口的框架,主要包括三个步骤: 利用不同尺寸的滑动窗口框住图中的某一部分作为候选区域: 提取候选区域相关的视觉特征.比如人脸检测常用的Harr特征:行人检测和普通目标检测常用的HOG特征等: 利用分类器进行识别,比如常用的SVM模型. 基于深度学习的目标检测分为两派: 基于区域提名的,如R-CNN.SPP-net…
基于深度学习的安卓恶意应用检测 from:http://www.xml-data.org/JSJYY/2017-6-1650.htm 苏志达, 祝跃飞, 刘龙     摘要: 针对传统安卓恶意程序检测技术检测准确率低,对采用了重打包和代码混淆等技术的安卓恶意程序无法成功识别等问题,设计并实现了DeepDroid算法.首先,提取安卓应用程序的静态特征和动态特征,结合静态特征和动态特征生成应用程序的特征向量:然后,使用深度学习算法中的深度置信网络(DBN)对收集到的训练集进行训练,生成深度学习网络:…