转载地址http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html 浅析人脸检测之Haar分类器方法  [补充] 这是我时隔差不多两年后, 回来编辑这篇文章加的这段补充, 说实话看到这么多评论很是惊讶, 有很多评论不是我不想回复, 真的是时间久了, 很多细节我都忘记了, 无力回复, 非常抱歉.  我本人并非做CV的, 这两年也都没有再接触CV, 作为一个本科毕业的苦逼码工, 很多理论基础都不扎实, 回顾这篇文章的时候, 我知道其实有很多…
浅析人脸检测之Haar分类器方法 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前的人脸检测方法主要有两大类:基于知识和基于统计. Ø  基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根据眼睛.眉毛.嘴巴.鼻子等器官的特征以及相互之间的几何位置关系来检测人脸. Ø  基于统计的方法:将人脸看作一个整体的模式——二维像素矩…
一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前的人脸检测方法主要有两大类:基于知识和基于统计. "基于知识的方法主要利用先验知识将人脸看作器官特征的组合,根据眼睛.眉毛.嘴巴.鼻子等器官的特征以及相互之间的几何位置关系来检测人脸.基于统计的方法则将人脸看作一个整体的模式--二维像素矩阵,从统计的观点通过大量人脸图像样本构造人脸模式…
我们要探讨的Haar分类器实际上是Boosting算法(提升算法)的一个应用,Haar分类器用到了Boosting算法中的AdaBoost算法,只是把AdaBoost算法训练出的强分类器进行了级联,并且在底层的特征提取中采用了高效率的矩形特征和积分图方法,这里涉及到的几个名词接下来会具体讨论. 在2001年,Viola和Jones两位大牛发表了经典的<Rapid Object Detection using a Boosted Cascade of Simple Features>和<R…
人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前人脸检测的方法主要有两大类:基于知识和基于统计. 基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根据眼睛.眉毛.嘴巴.鼻子等器官的特征以及相互之间的几何位置关系来检测人脸.主要包括模板匹配.人脸特征.形状与边缘.纹理特性.颜色特征等方法. 基于统计的方法:将人脸看作一个整体的模式——二维像素矩阵,从统计…
全文转载自CSDN的博客(不知道怎么将CSDN的博客转到博客园,应该没这功能吧,所以直接复制全文了),转载地址如下 http://blog.csdn.net/lsq2902101015/article/details/47057081 本篇文章主要介绍了如何使用OpenCV实现人脸检测.本文不具体讲解人脸检测的原理,直接使用OpenCV实现. OpenCV版本:2.4.10:VS开发版本:VS2012. 一.OpenCV人脸检测 要实现人脸识别功能,首先要进行人脸检测,判断出图片中人脸的位置,才…
Python人工智能第二篇:人脸检测和图像识别 人脸检测 详细内容请看技术文档:https://ai.baidu.com/docs#/Face-Python-SDK/top from aip import AipFace import base64 """ 你的 APPID AK SK """ APP_ID = '你的 App ID' API_KEY = '你的 Api Key' SECRET_KEY = '你的 Secret Key' face…
[1]基础学习笔记之opencv(1):opencv中facedetect例子浅析 http://www.cnblogs.com/tornadomeet/archive/2012/03/22/2411318.html[2]OpenCV学习笔记(二十七)——基于级联分类器的目标检测objdect http://blog.csdn.net/yang_xian521/article/details/6973667[3]Haar+Adaboost实现人头检测 http://blackhuman.blog…
在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐从室内演变到室外,从单一限定场景发展到广场.车站.地铁口等场景,人脸检测面临的要求越来越高,比如:人脸尺度多变.数量冗大.姿势多样包括俯拍人脸.戴帽子口罩等的遮挡.表情夸张.化妆伪装.光照条件恶劣.分辨率低甚至连肉眼都较难区分等.在这样复杂的环境下基于Haar特征的人脸检测表现的不尽人意.随着深度学…
转载自http://c.blog.sina.com.cn/profile.php?blogid=ab0aa22c890006v0 不少人认识我或者听说我的名字都是因为我过去做的关于人脸检测的工作,那么第一篇帖子就简单谈谈对我影响至深的这项工作的源起吧.2001年Paul Viola和Michael Jones在CVPR上发表了一篇震惊计算机视觉界的文章,Rapid object detection using a boosted cascade of simple features.相信几乎所有…
Atitti opencv2.4 实现的人脸检测 attilax总结 1.1. 1.OpenCV人脸检测的方法1 1.2. /atiplat_img/src/com/attilax/facedetection/FaceDetector.java1 1.3. 效果如图:很不错3 1.4. Attilax总结,效果还是不错的3 1.1. 1.OpenCV人脸检测的方法 在OpenCV中主要使用了两种特征(即两种方法)进行人脸检测,Haar特征和LBP特征. 上图中文件夹的名字“haarcascade…
源地址:http://www.thinkface.cn/thread-142-1-1.html 由于工作需要,我开始研究人脸检测部分的算法,这期间断断续续地学习Haar分类器的训练以及检测过程,在这里根据各种论文.网络资源的查阅和对代码的理解做一个简单的总结.我试图概括性的给出算法的起源.全貌以及细节的来龙去脉,但是水平有限,只能解其大概,希望对初学者起到帮助,更主要的是对我个人学习的一次提炼. 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据…
简介   OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows.Android和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法.  OpenCV的官方网址为:https://opencv.org/, 其Github网址为:https://github.com/opencv .  本文将会介绍OpenCV在…
Viola-Jones 人脸检测 1.Haar特征抽取 ‘ 2. Adaboost 算法…
链接地址:http://www.cnblogs.com/lknlfy/archive/2012/03/10/2388776.html 一.概述 初次看到FaceDetector这个类时,心里想:Android真的很强大.但直到我实际应用它的时候,心情从高山跌倒了谷底(看实现中的结果就知道了),再仔细看看官方文档,才知道这个类是API LEVEL1的,我就晕了,这就说明这个类很早就有了,但为什么到现在还没有得到改善呢.写这篇文章的目的还有一个,就是想强调一下用SurfaceView来画图的时候,要…
Java下使用opencv进行人脸检测 工作需要,研究下人脸识别,发现opencv比较常用,尽管能检测人脸,但识别率不高,多数是用来获取摄像头的视频流的,提取里面的视频帧,实现人脸识别时通常会和其他框架搭配使用,比如face_recognition.SeetaFace Engine.Facenet.不过这里先简单介绍下opencv在java下的使用(网上大多都是C++的demo,这里是使用其java接口,还提供了python的接口). 这里简单说下opencv(版本为340)的安装 window…
人脸检测及识别python实现系列(6)——终篇:从实时视频流识别出“我” 终于到了最后一步,激动时刻就要来临了,先平复一下心情,把剩下的代码加上,首先是为Model类增加一个预测函数: #识别人脸 def face_predict(self, image): #依然是根据后端系统确定维度顺序 if K.image_dim_ordering() == 'th' and image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE): image = resize_im…
原文地址:https://www.cnblogs.com/vipstone/p/8884991.html ==================================================== 技术实现思路 图片转换成灰色(去除色彩干扰,让图片识别更准确) 图片上画矩形 使用训练分类器查找人脸 具体实现代码 图片转换成灰色 使用OpenCV的cvtColor()转换图片颜色,代码如下: import cv2 filepath = "img/xingye-1.jpg"…
很早之前就做过一些关于人脸检测和目标检测的课题,一直都没有好好总结出来,趁着这个机会,写个总结,希望所写的内容能给研究同类问题的博友一些见解和启发!!博客里面涉及的公式太繁琐了,直接截图了. 转载请注明出处:http://www.cnblogs.com/adong7639/p/4194307.html 一 人脸检测之问题概述 人脸检测是CV领域的一个经典课题,很多学者对人脸检测做了深入的研究,但真正的分水岭却是在2001年viola等大神发表的那篇经典之作Rapid Object Detecti…
0. 引言 / Overview 介绍 Dlib 中基于 HOG,Histogram of Oriented Gradients / 方向梯度直方图 实现 Face Detect / 人脸检测 的两个 Examples / 例程 : 1. face_detector.py:   单张图片中的单个/多个人脸的面部定位 : 2. face_landmark_detection.py:  单张图片的脸部特征点标定 : 如果在 Windows下开发,在 Python 中安装 Dlib 有问题,可以参考我…
0. 引言 利用 Python 开发,借助 Dlib 库捕获摄像头中的人脸,进行实时人脸 68 个特征点标定: 支持多张人脸: 有截图功能: 图 1 工程效果示例( gif ) 图 2 工程效果示例( 静态图片 ) 1. 开发环境 Python: 3.6.3 Dlib: 19.7 OpenCv, NumPy import dlib # 人脸检测的库 Dlib import numpy as np # 数据处理的库 NumPy import cv2 # 图像处理的库 OpenCv 2. 源码介绍…
0. 引言 利用 Python 开发,借助 Dlib 库进行人脸检测 / face detection 和剪切:   1. crop_faces_show.py : 将检测到的人脸剪切下来,依次排序平铺显示在新的图像上: 实现的效果如 图1 所示,将 图1 原图中的 6 张人脸检测出来,然后剪切下来,在图像窗口中依次输出显示人脸: 2. crop_faces_save.py : 将检测到的人脸存储为单个人脸图像: 图 1 原图 和 crop_faces_show.py 处理后得到的平铺人脸图像窗…
代码地址如下:http://www.demodashi.com/demo/11783.html 大道如青天,我独不得出 前言 在上一篇iOS Core ML与Vision初识中,初步了解到了vision的作用,并在文章最后留了个疑问,就是类似下面的一些函数有什么用 - (instancetype)initWithCIImage:(CIImage *)image options:(NSDictionary<VNImageOption, id> *)options; - (instancetype…
最近学习人脸识别相关的东西,在MFC下使用OpenCV做了一个简单的应用.训练需要较多的数据,windows应用程序终究还是不方便,于是想着做成CS模式:检测识别都放在服务器端,视频获取和显示都放在网页端. 在网上找了一些资料,实现了简单的人脸检测.人脸识别只要在这个框架上加点代码就行.主要参考了下面这篇文章: http://www.open-open.com/home/space-361-do-blog-id-8960.html jetty版本:jetty-9.2.17.v20160517 j…
文章来自于:http://blog.jobbole.com/45936/ 自从谷歌眼镜被推出以来,围绕人脸识别,出现了很多争议.我们相信,不管是不是通过智能眼镜,人脸识别将在人与人交往甚至人与物交互中开辟无数种可能性. 为了帮助研究过程中探索人脸识别,我们列出以下人脸检测和识别API.希望有所帮助! Face Recognition- 拉姆达实验室斯蒂芬弄的.示例代码和图形演示点击http://api.lambdal.com/docs,我们的API提供了面部识别,面部检测,眼睛定位,鼻子定位,嘴…
源地址:http://blog.sina.com.cn/s/blog_79b67dfe0102uzra.html 最近需要用到人脸检测,于是找了篇引用广泛的论文实现了一下:Robust Real-Time Face Detection.实现的过程主要有三个步骤:人脸数据准备,算法实现,算法调试.     人脸数据集的准备:网上有很多免费的和付费的.比如这里有个网页介绍了一些常用的人脸数据库.我这里只是人脸检测(不是人脸识别),只要有人脸就可以了,所以我下载了几个数据集,然后把它们混在一起用(后面…
原地址:http://blog.csdn.net/celerychen2009/article/details/8839097 人脸检测和人脸识别都是属于典型的机器学习的方法,但是他们使用的方法却相差很大. 对于人脸检测而言,目前最有效的方法仍然是基于Adaboost的方法.在网上可以找到很多关于Adaboost方法的资料,但基本上是千篇一律,没有任何新意.给初学者带了很多不便.建议初学者只需要认真阅读:北京大学 赵楠 的本科毕业论文 :基于 AdaBoost算法的人脸检测 这篇毕业论文就够了.…
基于Haar特征Adaboost人脸检测级联分类 基于Haar特征Adaboost人脸检测级联分类,称haar分类器. 通过这个算法的名字,我们能够看到这个算法事实上包括了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了. 1        算法要点 Haar分类器 = Haar-like特征 + 积分图方法 + AdaBoost +级联: Haar分类器算法的要点例如以下: a)        使用Haar-like特征做检測. b)       使用积分图…
学习深度学习已有一段时间了,总想着拿它做点什么,今天终于完成了一个基于caffe的人脸检测,这篇博文将告诉你怎样通过caffe一步步实现人脸检测.本文主要参考唐宇迪老师的教程,在这里感谢老师的辛勤付出. 传统机器学习方法实现人脸检测: 人脸检测在opencv中已经帮我们实现了,我们要把它玩起来很简单,只需要简简单单的几行代码其实就可以搞定.(haarcascade_frontalface_alt.xml这个文件在opencv的安装目录下能找到,笔者的路径是:E:\opencv2.4.10\ope…
笔者今年做了一个和人脸有关的android产品,主要是获取摄像头返回的预览数据流,判断该数据流是否包含了人脸,有人脸时显示摄像头预览框,无人脸时摄像头预览框隐藏,看上去这个功能并不复杂,其实在开发过程中,遇到的问题也不多,全部都处理了,在正式推出前,这个产品在公司内部也测试了几个月,也没发现bug,但最近实施人员,在客户公司做实施时,反馈回来各种问题,这些问题有部分是程序bug,也有一部分是和硬件有关,因为测试环境有限,笔者无法对各种型号,各个厂家的硬件进行测试,这篇文章主要是记录,摄像头给我们…