119. Pascal's Triangle II (Graph; WFS)】的更多相关文章

Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Return [1,3,3,1]. Note: Could you optimize your algorithm to use only O(k) extra space?   思路:从右往左遍历并填写三角形的图结构 class Solution { public: vector<int> getRow(int ro…
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. Note:Could you optimize your algorithm to use only O(k) extra space? [思路] 我们为了满足空间复杂度的要求,我们新建两个ArrayList,一个负责存储上一个Pascal行的结果,一个根据上一个Pascal行得出当前P…
原文题目: 118. Pascal's Triangle 119. Pascal's Triangle II 读题: 杨辉三角问题 '''118''' class Solution(object): def generate(self, numRows): """ :type numRows: int :rtype: List[List[int]] """ if not numRows: return [] result = [] for i i…
118. Pascal's Triangle 第一种解法:比较麻烦 https://leetcode.com/problems/pascals-triangle/discuss/166279/cpp-beats-1002018.9.3(with-annotation) class Solution { public: vector<vector<int>> generate(int numRows) { vector<vector<int>> result;…
Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note that the row index starts from 0. Example: Input: 3 Output: [1,3,3,1]  原题地址:Pascal's Triangle II 题意: 杨辉三角 代码:  class Solution(object): def getRow(self,…
Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note that the row index starts from 0. In Pascal's triangle, each number is the sum of the two numbers directly above it. Example: Input: 3 Output: [1,3,3,1…
Problem: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. Note:Could you optimize your algorithm to use only O(k) extra space? Summary: 返回杨辉三角(帕斯卡三角)的第k行. Solution: 1. 若以二维数组的形式表示杨辉三角,则可轻易推算出ro…
题目来源 https://leetcode.com/problems/pascals-triangle-ii/ Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. 题意分析 Input:integer Output:kth row of the Pascal's triangle Conditions:只返回第n行 题目思路 同118,不…
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. Note:Could you optimize your algorithm to use only O(k) extra space? 上一道题的延伸版,就是直接求出第k行的数,要求用o(k)的空间复杂度. 也是直接相加就可以了. public class Solution { pub…
题目描述: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. 解题思路: 每次在上一个list前面插入1,然后后面的每两个间相加赋值给前一个数. 代码描述: public class Solution { public List<Integer> getRow(int rowIndex) { List<Integer> r…
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. 分析 二项式展开式的系数 不加(long long)提交会出错. class Solution { public: vector<int> getRow(int rowIndex) { vector<int> vals; vals.resize(rowIndex+); va…
题目是: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. Note:Could you optimize your algorithm to use only O(k) extra space? (注意:这里要求空间为O(k)) 一个满足条件的答案如下: public class Solution { public IList<int…
题目: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. Note:Could you optimize your algorithm to use only O(k) extra space? 提示: 此题要求给出杨辉三角对应行号下的所有数字序列,且空间复杂度为O(n).这里我们可以根据杨辉三角的定义,逐行计算.顺序从左到右或者从右到…
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. Note:Could you optimize your algorithm to use only O(k) extra space? 题目标签:Array 这道题目与之前那题不同的地方在于,之前是给我们一个行数n,让我们把这几行的全部写出来,这样就可以在每写新的一行的时候根据之前的那…
一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Return [1,3,3,1]. Note: Could you optimize your algorithm to use onl…
Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note that the row index starts from 0. In Pascal's triangle, each number is the sum of the two numbers directly above it. Example: Input: 3 Output: [1,3,3,1…
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Return [1,3,3,1]. 解题思路: 注意,本题的k相当于上题的k+1,其他照搬即可,JAVA实现如下: public List<Integer> getRow(int rowIndex) { List<Integer> alist=new ArrayList<Integer>();…
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. Note:Could you optimize your algorithm to use only O(k) extra space? 118. Pascal's Triangle 的拓展,给一个索引k,返回杨辉三角的第k行. 解法:题目要求优化到 O(k) 的空间复杂,那么就不能把每…
Description Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note that the row index starts from 0. In Pascal's triangle, each number is the sum of the two numbers directly above it. Example: Input: Output…
1. 题目 1.1 英文题目 Given an integer rowIndex, return the rowIndexth (0-indexed) row of the Pascal's triangle. In Pascal's triangle, each number is the sum of the two numbers directly above it as shown: 1.2 中文题目 输出杨辉三角形的指定行 1.3输入输出 输入 输出 rowIndex = 3 [1,3…
杨辉三角,这次要输出第rowIndex行 用滚动数组t进行递推 t[(i+1)%2][j] = t[i%2][j] + t[i%2][j - 1]; class Solution { public: vector<int> getRow(int rowIndex) { ) ,); int n = rowIndex; vector<]; ; i < ; ++i){ t[i].resize(n + , ); } ; i <= n; ++i){ ; j < i; ++j){…
#-*- coding: UTF-8 -*-#杨辉三角返回给定行#方法:自上而下考虑问题,从给定的一行计算出下一行,则给定行数之后,计算的最后一行就是求解的最后一行class Solution(object):    def getRow(self, rowIndex):        """        :type rowIndex: int        :rtype: List[int]        """        #初始化杨辉三…
给定一个索引 k,返回帕斯卡三角形(杨辉三角)的第 k 行.例如,给定 k = 3,则返回 [1, 3, 3, 1].注:你可以优化你的算法到 O(k) 的空间复杂度吗?详见:https://leetcode.com/problems/pascals-triangle-ii/description/ Java实现: class Solution { public List<Integer> getRow(int rowIndex) { List<Integer> res = new…
118 - Pascal's Triangle Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Return [ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ] Solution: class Solution { public: vector<vector<int>> generate(int n…
package y2019.Algorithm.array; import java.util.ArrayList; import java.util.List; /** * @ProjectName: cutter-point * @Package: y2019.Algorithm.array * @ClassName: GetRow * @Author: xiaof * @Description: 119. Pascal's Triangle II * Given a non-negativ…
119. Pascal's Triangle II Easy Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note that the row index starts from 0. In Pascal's triangle, each number is the sum of the two numbers directly above it. Exa…
Triangle Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below. For example, given the following triangle [ [], [,4], [6,,7], [4,,8,3] ] The minimum path sum from top to bottom is…
一.Pascal's Triangle Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Return [ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ] class Solution { public: vector<vector<int>> generate(int numRows) { vect…
杨辉三角形II(Pascal's Triangle II) 问题 给出一个索引k,返回杨辉三角形的第k行. 例如,给出k = 3,返回[1, 3, 3, 1] 注意: 你可以优化你的算法使之只使用O(k)的额外空间吗? 初始思路 首先来复习复习杨辉三角形的性质(来自wiki): 杨辉三角以正整数构成,数字左右对称,每行由1开始逐渐变大,然后变小,回到1. 第行的数字个数为个. 第行的第个数字为组合数. 第行数字和为. 除每行最左侧与最右侧的数字以外,每个数字等于它的左上方与右上方两个数字之和(也…
Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5, Return [ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ] 解决方案: vector<vector<int>> generate(int numRows) { vector<vector<int>> res = {};…