特征分解. 整数分解质因素. 特征分解(eigendecomposition),使用最广,矩阵分解一组特征向量.特征值.方阵…
一.概述 Andrew Ng:Coming up with features is difficult, time-consuming, requires expert knowledge. "Applied machine learning" is basically feature engineering( 吴恩达, 人工智能和机器学习领域国际最权威学者之一:提取特征是困难的,耗时的,需要丰富的专家知识."应用机器学习"从根本上来说就是特征工程) 业界广泛流传:…
绘制斜的拉伸效果 一般拉伸方向垂直于草图基准面, 可以实现绘制一条线,作为其拉伸方向 效果如下 简单孔 在菜单中选择“插入”--“特征”---“简单直孔” 选择一个平面放置 设置好孔的直径和深度后,确定, 使用智能尺寸标注圆心位置 异形孔 点击“异形孔向导” 点击左侧的“位置”, , 在右侧选择一个平面放置孔,可以一次创建多个孔, 比如选择沉头孔,标准选择GB,类型选择六角头螺栓C级, 大小选择M4, 然后如上图确定孔的位置…
初等数论学习笔记 I:同余相关. 初等数论学习笔记 II:分解质因数. 1. 数论函数 本篇笔记所有内容均与数论函数相关.因此充分了解各种数论函数的名称,定义,符号和性质是必要的. 1.1 相关定义 数论函数:定义域为正整数的函数称为 数论函数.因其在所有正整数处均有定义,故可视作数列.OI 中常见的数论函数的陪域(即可能的取值范围)为整数. 加性函数:若对于任意 \(a, b\in \mathbb{N}_+\) 且 \(a\perp b\) 均有 \(f(ab) = f(a) + f(b)\)…
关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actionhttps://github.com/pbharrin/machinelearninginaction ****************************…
1.理解特征值,特征向量 一个对角阵\(A\),用它做变换时,自然坐标系的坐标轴不会发生旋转变化,而只会发生伸缩,且伸缩的比例就是\(A\)中对角线对应的数值大小. 对于普通矩阵\(A\)来说,是不是也可以找到这样的向量,使得经\(A\)变换后,不改变方向而只伸缩?答案是可以的,这种向量就是\(A\)的特征向量,而对应的伸缩比例就是对应的特征值. 特征值会有复数是为什么? 首先要知道,虚数单位\(i\)对应的是旋转\(90^o\),那么,如果特征值是复数,则对应的特征向量经矩阵\(A\)变换后将…
  Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓"好特征"的指导下构建目标函数来进行优化,其中只涉及一个可调参数.本文将主要讨论两个问题: (1)什么样的特征是好的特征: (2)如何利用好特征的条件来构造 Sparse Filtering 的目标函数. 目录链接 (一)网络结构与特征矩阵 (二)好特征的刻画 (三)目标函数的建立和求解…
ArcGIS案例学习笔记-聚类点的空间统计特征 联系方式:谢老师,135-4855-4328,xiexiaokui@qq.com 目的:对于聚集点,根据分组字段case field,计算空间统计特征 数据: 方法: 1. 聚类边界 2. 地理分布特征 联系方式:谢老师,135-4855-4328,xiexiaokui@qq.com…
Caffe学习笔记4图像特征进行可视化 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing/ 这篇文章主要参考的是http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/00-classification.ipynb 可以算是对它…
UFLDL深度学习笔记 (三)无监督特征学习 1. 主题思路 "UFLDL 无监督特征学习"本节全称为自我学习与无监督特征学习,和前一节softmax回归很类似,所以本篇笔记会比较简化,主题思路和步骤如下: 把有标签数据分为两份,先对一份原始数据做无监督的稀疏自编码训练,获得输入层到隐藏层的最优化权值参数\(W, b\): 把另一份数据分成分成训练集与测试集,都送入该参数对应的第一层网络(去掉输出层的稀疏自编码网络): 用训练集输出的特征作为输入,训练softmax分类器: 再用此参数…