以前搞数学建模的时候,研究过(其实也不算是研究,只是大概了解)一些人工智能算法,比如前面已经说过的粒子群算法(PSO),还有著名的遗传算法(GA),模拟退火算法(SA),蚁群算法(ACA)等.当时懂得非常浅,只会copy别人的代码(一般是MATLAB),改一改值和参数,东拼西凑就拿过来用了,根本没有搞懂的其内在的原理到底是什么.这一段时间,我又重新翻了一下当时买的那本<MATLAB智能算法30个案例分析>,重读一遍,发现这本书讲的还是非常不错的,不仅有现成算法的MATLAB实现,而且把每一种算…
上一次我们使用遗传算法求解了一个较为复杂的多元非线性函数的极值问题,也基本了解了遗传算法的实现基本步骤.这一次,我再以经典的TSP问题为例,更加深入地说明遗传算法中选择.交叉.变异等核心步骤的实现.而且这一次解决的是离散型问题,上一次解决的是连续型问题,刚好形成对照. 首先介绍一下TSP问题.TSP(traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还没有找到一个多项式时间的有效算法.TS…
上一次我们使用遗传算法求解了一个较为复杂的多元非线性函数的极值问题,也基本了解了遗传算法的实现基本步骤.这一次,我再以经典的TSP问题为例,更加深入地说明遗传算法中选择.交叉.变异等核心步骤的实现.而且这一次解决的是离散型问题,上一次解决的是连续型问题,刚好形成对照. 首先介绍一下TSP问题.TSP(traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还没有找到一个多项式时间的有效算法.TS…
4.1 案例背景 \[y = {x_1}^2 + {x_2}^2\] 4.2 模型建立 神经网络训练拟合根据寻优函数的特点构建合适的BP神经网络,用非线性函数的输入输出数据训练BP神经网络,训练后的BP神经网络就可以预测函数输出.遗传算法极值寻优把训练后的 BP 神经网络预测结果作为个体适应度值,通过选择.交叉和变异操作寻找函数的全局最优值及对应输入值. 网络结构:2-5-1 训练数据:3900,测试数据:100 4.3 编程实现 %% 基于神经网络遗传算法的系统极值寻优 %% 清空环境变量 c…
3.1 案例背景 遗传算法(Genetic Algorithms)是一种模拟自然界遗传机制和生物进化论而形成的一种并行随机搜索最优化方法. 其基本要素包括:染色体编码方法.适应度函数.遗传操作和运行参数. 非线性函数:$y=x_{1}^{2}+x_{2}^{2}$ 3.2 模型建立 3.2.1 算法流程 遗传算法优化使用遗传算法优化BP神经网络的权值和阔值,种群中的每个个体都包含了一 个网络所有权值和阔值,个体通过适应度函数计算个体适应度值,遗传算法通过选择.交叉和变异操作找到最优适应度值对应个…
使用C语言样式的文件操作函数,需要包含stdio.h头文件. 1.打开文件的函数: //oflag的取值为“w”或“r”,分别表示以写或读的方式打开 FILE* fd = fopen(filename.c_str(), oflag); 2.写文件的函数原型: size_t fwrite(const void* buffer, size_t size, size_t count, FILE* stream ); 其中buffer是需要向文件中写入的内容在内存中的首地址指针,size是待写入内容的每…
C语言带参数的main函数 #include<stdio.h> int main(int argc,char*argv[]) { int i; ;i<argc;i++) printf("%s\n",argv[i]); getchar(); getchar(); ; } 运行结果…
在c语言中使用变长参数最常见的就是下面两个函数了: int printf(const char *format, ...); int scanf(const char *format, ...); 那他们是怎样实现支持变成参数的呢?在使用变长参数的函数(这里假设是func)实现部分其实用到了stdarg.h里面的多个宏来访问那些不确定的参数,它们分别是: void va_start(va_list ap, last); type va_arg(va_list ap, type); void va…
最近接触到了遗传算法以及利用遗传算法求最优解,所以就把这些相关的内容整理记录一下. 一.遗传算法简介(摘自维基百科) 遗传算法(英语:genetic algorithm (GA))是计算数学中用于解决最佳化的搜索算法,是进化算法的一种.进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传.突变.自然选择以及杂交等. 算法 选择初始生命种群 循环 评价种群中的个体适应度 以比例原则(分数高的挑中概率也较高)选择产生下一个种群. 改变该种群(交叉和变异) 直到停止循环的条件满足…
1.最小二乘原理 Matlab直接实现最小二乘法的示例: close x = 1:1:100; a = -1.5; b = -10; y = a*log(x)+b; yrand = y + 0.5*rand(1,size(y,2)); %%最小二乘拟合 xf=log(x); yf=yrand; xfa = [ones(1,size(xf,2));xf] w = inv(xfa*xfa')*xfa*yf';%直接拟合得到的结果 参考资料: 1.http://blog.csdn.net/lotus_…