dnn文本分类】的更多相关文章

简介 文本分类任务根据给定一条文本的内容,判断该文本所属的类别,是自然语言处理领域的一项重要的基础任务.具体的,本任务是对文本quey进行分类,任务流程如下: 收集用户query数据. 清洗,标记. 模型设计. 模型学习效果评估. 运行 训练: sh +x train.sh 预测: python infer.py 输入/输出 输入样本: label text(分词后) 0 龙脉温泉 住宿 1 龙马 机场 飞机 2 龙里 旅游 其中,label 0,1和2分别代表:酒店,票务和住宿. 预估样本:…
TensorFlow文本分类: 亲测可用:https://blog.csdn.net/u012052268/article/details/77862202 简单实例:https://www.leiphone.com/news/201705/tIiuOvjsaGWQ872L.html 不错:https://blog.csdn.net/u011439796/article/details/77692621 仅供参考:https://www.leiphone.com/news/201704/HE5R…
雷锋网按:本文作者陆池,原文载于作者个人博客,雷锋网已获授权. 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用tensorflow实现了一下,感觉和之前使用的theano还是有很大的区别,有必要总结mark一下. 模型说明 这个分类的模型其实也是很简单,主要就是一个单层的LSTM模型,当然也可以实现多层的模型,多层的模型使用Tensorflow尤其简单,下面是这个模型的图 简单解释一下这个图,每个word经…
[深度应用]·Keras实现Self-Attention文本分类(机器如何读懂人心) 配合阅读: [深度概念]·Attention机制概念学习笔记 [TensorFlow深度学习深入]实战三·分别使用DNN,CNN与RNN(LSTM)做文本情感分析 笔者在[深度概念]·Attention机制概念学习笔记博文中,讲解了Attention机制的概念与技术细节,本篇内容配合讲解,使用Keras实现Self-Attention文本分类,来让大家更加深入理解Attention机制. 作为对比,可以访问[T…
使用CNN做文本分类 from __future__ import division, print_function, absolute_import import tensorflow as tf import tflearn from tflearn.layers.core import input_data, dropout, fully_connected from tflearn.layers.conv import conv_1d, global_max_pool from tfle…
这里做了一些小的修改,感谢谷歌rd的帮助,使得能够统一处理dense的数据,或者类似文本分类这样sparse的输入数据.后续会做进一步学习优化,比如如何多线程处理. 具体如何处理sparse 主要是使用embedding_lookup_sparse,参考 https://github.com/tensorflow/tensorflow/issues/342 两个文件 melt.py binary_classification.py 代码和数据已经上传到 https://github.com/ch…
Atitti 文本分类  以及 垃圾邮件 判断原理 以及贝叶斯算法的应用解决方案 1.1. 七.什么是贝叶斯过滤器?1 1.2. 八.建立历史资料库2 1.3. 十.联合概率的计算3 1.4. 十一.最终的计算公式3 1.5. .这时我们还需要一个用于比较的门槛值.Paul Graham的门槛值是0.9,概率大于0.9,4 1.1. 七.什么是贝叶斯过滤器? 垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户. 正确识别垃圾邮件的技术难度非常大.传统的垃圾邮件过滤方法,主要有"关键词法&quo…
weka介绍 参见 1)百度百科:http://baike.baidu.com/link?url=V9GKiFxiAoFkaUvPULJ7gK_xoEDnSfUNR1woed0YTmo20Wjo0wYo7uff4mq_wg3WzKhTZx4Ok0JFgtiYY19U4q 2)weka官网: http://www.cs.waikato.ac.nz/ml/weka/ 简单文本分类实现: 此处文本为已处理好的文本向量空间模型,关于文本特征提取主要是基于TF-IDF算法对已分词文档进行特征抽取,然后基于…
What is Text Classification? Text classification typically involves assigning a document to a category by automated or human means. LingPipe provides a classification facility that takes examples of text classifications--typically generated by a huma…
当我们尝试使用统计机器学习方法解决文本的有关问题时,第一个需要的解决的问题是,如果在计算机中表示出一个文本样本.一种经典而且被广泛运用的文本表示方法,即向量空间模型(VSM),俗称“词袋模型”. 我们首先看一下向量空间模型如何表示一个文本: 空间向量模型需要一个“字典”:文本的样本集中特征词集合,这个字典可以在样本集中产生,也可以从外部导入,上图中的字典是[baseball, specs, graphics,..., space, quicktime, computer]. 有了字典后便可以表示…