R语言 多元线性回归分析】的更多相关文章

#线性模型中有关函数#基本函数 a<-lm(模型公式,数据源) #anova(a)计算方差分析表#coef(a)提取模型系数#devinace(a)计算残差平方和#formula(a)提取模型公式#plot(a)绘制模型诊断图#predict(a)用作预测#print(a)显示#residuals()计算残差#setp()逐步回归分析#summary()提取模型资料 #多元线性回归分析 #回归系数的估计 #显著性检验: 1回归系数的显著性检验 t检验 就是检验某个变量系数是否为0 2回归方程的显…
对于一个因变量y,n个自变量x1,...,xn,要如何判断y与这n个自变量之间是否存在线性关系呢? 肯定是要利用他们的数据集,假设数据集中有m个样本,那么,每个样本都分别对应着一个因变量和一个n维的自变量: m个样本,就对应着一个m维的列向量Y,一个m×n维的矩阵X Y是X的每一列X1,...,Xn的函数 那么,Y与X1,...,Xn之间到底是什么关系呢?是满足Y=a1*X1+...+an*Xn这样的线性关系还是Y=f(X1,...,Xn)这样的非线性关系呢? 为了解决这个问题,可以首先利用多元…
逐步回归分析是以AIC信息统计量为准则,通过选择最小的AIC信息统计量,来达到删除或增加变量的目的. R语言中用于逐步回归分析的函数 step()    drop1()     add1() #1.载入数据 首先对数据进行多元线性回归分析 tdata<-data.frame( x1=c( , ,,, ,, , , ,, ,,), x2=c(,,,,,,,,,,,,), x3=c( ,, , , , ,,,, ,, , ), x4=c(,,,,,, ,,,,,,), Y =c(78.5,74.3,…
对着满屏的游戏后台数据,需要快速了解数据特征,一种茫然无从下手的感觉? 本文在游戏后台数据中,如何通过R语言快速的了解游戏后台的数据特征,以及统计各个数据之间的相关系数,并通过相关图来发现其中相关系数较高的数据,从而通过R得到高相关系数之间的线性回归方程,最后通过矩阵散点图来初步发现数据中的一些规律解决相应的问题.附:本文需要安装corrgram和car包 具体代码如下: library(corrgram) library(car) summary(data9) cor(data9) scatt…
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论.这其中可能包括了因为更好的家庭条件,所以有了更好的教育:因为在一线城市发展,所以有了更好的工作机会:所处的行业赶上了大的经济上行周期等.要想解读这些规律,是复杂的.多维度的,多元回归分析方法更适合解读生活的规律. 由于本文为非统计的专业…
使用R做回归分析整体上是比较常规的一类数据分析内容,下面我们具体的了解用R语言做回归分析的过程. 首先,我们先构造一个分析的数据集 x<-data.frame(y=c(102,115,124,135,148,156,162,176,183,195), var1=runif(10,min=1,max=50), var2=runif(10,min=100,max=200), var3=c(235,321,412,511,654,745,821,932,1020,1123)) 接下来,我们进行简单的一…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 线性混合模型与普通的线性模型不同的地方是除了有固定效应外还有随机效应. 笔者认为一般统计模型中的横截面回归模型中大致可以分为两个方向:一个是交互效应方向(调节.中介效应).一个是随机性方向(固定效应.随机效应). 两个方向的选择需要根据业务需求: 交互效应较多探究的是变量之间的网络关系,可能会有很多变量,多变量之间的关系: 而随机性探究的是变量…
多元线性回归 多元线性回归模型 实际中有很多问题是一个因变量与多个自变量成线性相关,我们可以用一个多元线性回归方程来表示. 为了方便计算,我们将上式写成矩阵形式: Y = XW 假设自变量维度为N W为自变量的系数,下标0 - N X为自变量向量或矩阵,X维度为N,为了能和W0对应,X需要在第一行插入一个全是1的列. Y为因变量 那么问题就转变成,已知样本X矩阵以及对应的因变量Y的值,求出满足方程的W,一般不存在一个W是整个样本都能满足方程,毕竟现实中的样本有很多噪声.最一般的求解W的方式是最小…
逐步回归 向前引入法:从一元回归开始,逐步加快变量,使指标值达到最优为止 向后剔除法:从全变量回归方程开始,逐步删去某个变量,使指标值达到最优为止 逐步筛选法:综合上述两种方法 多元线性回归的核心问题:应该选择哪些变量? RSS(残差平方和)与R2(相关系数平方)选择法:遍历所有可能的组合,选出使RSS最小,R2最大的模型 AIC(Akaike information criterion)准则和BIC(Bayesian information criterion)准则 AIC=n×ln(RSSP…
> #############6.2一元线性回归分析 > x<-c(0.10,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.20,0.21,0.23) > y<-c(42.0,43.5,45.0,45.5,45.0,47.5,49.0,53.0,50.0,55.0,55.0,60.0) > plot(x~y) > lm.sol<-lm(y ~ x) > summary(lm.sol) Call: lm(formul…