Python之特征工程-3】的更多相关文章

一.什么是特征工程?其实也是数据处理的一种方式,和前面的原始数据不一样的是,我们在原始数据的基础上面,通过提取有效特征,来预测目标值.而想要更好的去得出结果,包括前面使用的数据处理中数据特征提取,新增减少等手段都是特征功能的一种,这里为什么要单独提出来讲特征工程,而不是数据处理呢? 二.数据处理的方式有很多种方式,合并等.这里讲特征工程主要是讲转换器,为啥这样说呢,因为我们在使用数据的时候,比如:文本,那我们通过文本的方式去计算,这个方式不利于数学公式的发挥.那么问题来了,想要更好的使数据达到预…
特征处理是特征工程的核心部分,特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样式确定的步骤,更多的是工程上的经验和权衡,因此没有统一的方法,但是sklearn提供了较为完整的特征处理方法,包括数据预处理,特征选择,降维等.首次接触到sklearn,通常会被其丰富且方便的算法模型库吸引,但是这里介绍的特征处理库也非常强大! 经过前人的总结,特征工程已经形成了接近标准化的流程,如下图所示(此图来自此网友,若侵权,联系我,必删除) 1 特征来源——导入数据 在做数据分析的时候,特征…
机器学习的模型训练越来越自动化,但特征工程还是一个漫长的手动过程,依赖于专业的领域知识,直觉和数据处理.而特征选取恰恰是机器学习重要的先期步骤,虽然不如模型训练那样能产生直接可用的结果.本文作者将使用Python的featuretools库进行自动化特征工程的示例. 机器学习越来越多地从手动设计模型转变为使用H20,TPOT和auto-sklearn等工具来自动优化的渠道.这些库以及随机搜索等方法旨在通过查找数据集的最优模型来简化模型选择和转变机器学习的部分,几乎不需要人工干预.然而,特征工程几…
任何参与过机器学习比赛的人,都能深深体会特征工程在构建机器学习模型中的重要性,它决定了你在比赛排行榜中的位置. 特征工程具有强大的潜力,但是手动操作是个缓慢且艰巨的过程.Prateek Joshi,是一名数据科学家,花了不少时间研究多种特征,并从不同角度分析其可行性. 现在,整个特征工程过程可实现自动化,他将通过这篇文章进行详细介绍. 下面会使用Python特征工程库Featuretools来实现这个任务.在讨论之前,我们先介绍特征工程的基本组成,再用直观例子来理解它们,最后把自动特征工程应用到…
  一.机器学习概述 1.1.什么是机器学习? 机器学习是从数据中自动分析获得规律(模型),并利用规律对未知数据进行预测 1.2.为什么需要机器学习? 解放生产力,智能客服,可以不知疲倦的24小时作业 解决专业问题,ET医疗,帮助看病 提供社会便利,例如杭州的城市大脑 1.3.机器学习应用场景 自然语言处理 无人驾驶 计算机视觉 推荐系统 二.数据来源与类型 2.1.数据的来源 企业日益积累的大量数据(互联网公司更为显著) 政府掌握的各种数据 科研机构的实验数据 2.2.数据的类型 数据的类型将…
作者:韩信子@ShowMeAI 机器学习实战系列:https://www.showmeai.tech/tutorials/41 本文地址:https://www.showmeai.tech/article-detail/328 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 特征工程(feature engineering)指的是:利用领域知识和现有数据,创造出新的特征,用于机器学习算法. 特征:数据中抽取出来的对结果预测有用的信息. 特征工程:使用专业背景…
文档:https://docs.featuretools.com/#minute-quick-start 所谓自动特征工程,即是将人工特征工程的过程自动化.以 featuretools 为代表的自动特征工程在整个机器学习的端到端实践中扮演的角色如下图所示: 1. demo 导入包:import featuretools as ft 加载数据:data = ft.demo.load_mock_customer(),data 为 dict 类型 data.keys() ⇒ dict_keys(['t…
一.Standardization 方法一:StandardScaler from sklearn.preprocessing import StandardScaler sds = StandardScaler() sds.fit(x_train) x_train_sds = sds.transform(x_train) x_test_sds = sds.transform(x_test) 方法二:MinMaxScaler  特征缩放至特定范围 , default=(0, 1) from sk…
特征工程常见示例: 分类数据.文本.图像. 还有提高模型复杂度的 衍生特征 和 处理 缺失数据的填充 方法.这个过程被叫做向量化.把任意格式的数据 转换成具有良好特性的向量形式. 分类特征 比如房屋数据: 房价.面积.地点信息. 方案1:把分类特征用映射关系 编码成 整数 . {'Queen Anne': 1, 'Fremont': 2, 'Wallingford': 3}; 在scikit-learn中并不好,数值特征可以反映代数量.会产生 1<2<3的 方案2:使用独热编码 有效增加额外的…
学习框架 特征工程(Feature Engineering) 数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已 什么是特征工程: 帮助我们使得算法性能更好发挥性能而已 sklearn主要用于特征工程pandas主要用于数据清洗.数据处理 特征工程包含如下3个内容: 1.特征抽取/特征提取 |__>字典特征抽取,应用DiceVectorizer实现对类别特征进行数值化.离散化 |__>文本特征抽取,应用CounterVertorize/TfIdfVectorize实现对文本特征数…