理解自动梯度计算autograd】的更多相关文章

理解自动求导 例子 def f(x): a = x * x b = x * a c = a + b return c 基于图理解 代码实现 def df(x): # forward pass a = x * x b = x * a c = a + b # backward pass g_c = 1 # c = a + b g_a = g_c * 1 g_b = g_c * 1 # b = x * a g_x = g_b * a g_a += g_b * x # a = x * x g_x +=…
前言 上一篇中介绍了计算图以及前向传播的实现,本文中将主要介绍对于模型优化非常重要的反向传播算法以及反向传播算法中梯度计算的实现.因为在计算梯度的时候需要涉及到矩阵梯度的计算,本文针对几种常用操作的梯度计算和实现进行了较为详细的介绍.如有错误欢迎指出. 首先先简单总结一下, 实现反向传播过程主要就是完成两个任务: 实现不同操作输出对输入的梯度计算 实现根据链式法则计算损失函数对不同节点的梯度计算 再附上SimpleFlow的代码地址: https://github.com/PytLab/simp…
知名半导体制造商恩智浦NXP已经准备好了自家的自动驾驶计算开源平台Bluebox,将为汽车制造商提供现成的一体化自动 驾驶计算解决方案.专为自动驾驶设备的BlueBox中央计算引擎.不仅能够为无人驾驶提供人工智能,还为车间通讯和多重传感器提供接口支持,充当车辆的 “神经系统”,传统汽车制造商使用该方案能够轻松开发四级无人驾驶汽车(能够真正实现自主式无人自动驾驶). 专为自动驾驶设备的BlueBox中央计算引擎.BlueBox结合了雷达.LIDAR(激光探测与测量).视觉传感以及加载的车联网(Ve…
本文介绍Softmax运算.Softmax损失函数及其反向传播梯度计算, 内容上承接前两篇博文 损失函数 & 手推反向传播公式. Softmax 梯度 设有K类, 那么期望标签y形如\([0,0,...0,1,0...0]^T\)的one-hot的形式. softmax层的输出为\([a_1,a_2,...,a_j,...a_K]^T\), 其中第j类的softmax输出为: \[ \begin{align} a_{j} &= \frac{\exp(z_{j})}{\sum_{k=1}^K…
CS231n Convolutional Neural Networks for Visual Recognition -- optimization 1. 多类 SVM 的损失函数(Multiclass SVM loss) 在给出类别预测前的输出结果是实数值, 也即根据 score function 得到的 score(s=f(xi,W)), Li=∑j≠yimax(0,sj−syi+Δ),Δ=1(一般情况下) yi 表示真实的类别,syi 在真实类别上的得分: sj,j≠yi 在其他非真实类…
1. 计算梯度 创建一个函数 \(y\) ,并且计算关于其参数 \(x\) 的微分. 为了实现这一功能,将使用函数 \(T.grad\) . 例如:计算 \(x^2\) 关于参数 \(x\) 的梯度. 注:$ d(x^2)/d(x) = 2 * x$. 以下就是计算该梯度的 Python 代码: import numpy import theano import theano.tensor as T from theano import pp x = T.dscalar('x') y = x *…
计算属性是一个很邪门的东西,只要在它的函数里引用了 data 中的某个属性,当这个属性发生变化时,函数仿佛可以嗅探到这个变化,并自动重新执行. 上述代码会源源不断的打印出 b 的值.如果希望 a 依赖 data 中的 x 而变化,只需保证 a 函数中有 this.x 即可.如果函数中没有出现 data 中的属性,那么无论 data 中的属性怎么变,a 对应的函数一次也不会执行. Vue 怎么知道计算属性在函数中引用了哪个 data 属性?这个函数又是怎么知道 data 属性变了,而且只关心它内部…
1. cv2.Scharr(src,ddepth, dx, dy), 使用Scharr算子进行计算 参数说明:src表示输入的图片,ddepth表示图片的深度,通常使用-1, 这里使用cv2.CV_64F允许结果是负值, dx表示x轴方向算子,dy表示y轴方向算子 2.cv2.laplacian(src, ddepth) 使用拉普拉斯算子进行计算 参数说明: src表示输入的图片,ddepth表示图片的深度,这里使用cv2.CV_64F允许结果是负值 scharr算子, 从图中我们可以看出sch…
Saliency Maps 这部分想探究一下 CNN 内部的原理,参考论文 Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. 一般我们反向传播 CNN 的时候,是可以得到图片的梯度(Image Gradient)的,但是因为网络要学习的参数是权重 W,因此都不会用到这个梯度.这篇论文可视化了一下图片的梯度,称作是 saliency map,发现其实是网络对不…
计算如下\begin{array}{l}{x_{1}=w_{1} * \text { input }} \\ {x_{2}=w_{2} * x_{1}} \\ {x_{3}=w_{3} * x_{2}}\end{array} 其中$w_{1}$,$w_{2}$,$w_{3}$是权重参数,是需要梯度的.在初始化时,三个值分别为1,0,1. 程序代码如下: import torch import torch.nn as nn input_data = torch.randn(1) weight1 =…