如果需要训练的数据大小不大,例如不到1G,那么可以直接全部读入内存中进行训练,这样一般效率最高. 但如果需要训练的数据很大,例如超过10G,无法一次载入内存,那么通常需要在训练的过程中分批逐渐读入. 使用 tf.data API 可以构建数据输入管道,轻松处理大量的数据,不同的数据格式,以及不同的数据转换. 一,构建数据管道 可以从 Numpy array, Pandas DataFrame, Python generator, csv文件, 文本文件, 文件路径, tfrecords文件等方式…
构建数据管道需要考虑的问题: 及时性  可靠性 高吞吐量和动态吞吐量   数据格式  转换    安全性   故障处理能力  耦合性与灵活性 数据管道的构建分为2个阵营,ETL和ELT ETL:提取-转换-加载   当数据流经管道时,数据管道负责处理他们 ELT:提取-加载-转换:数据管道只做少量的转换,高保真 数据管道最重要的作用是解耦数据源和数据池 发生耦合情况: 临时数据管道    元数据丢失    末端处理 Connect工作原理 连接器和任务 连接器实现了ConnectorAPI ,A…
文 | 陈肃 DataPipeline  CTO 随着企业应用复杂性的上升和微服务架构的流行,数据正变得越来越以应用为中心. 服务之间仅在必要时以接口或者消息队列方式进行数据交互,从而避免了构建单一数据库集群来支撑不断增长的业务需要.以应用为中心的数据持久化架构,在带来可伸缩性好处的同时,也给数据的融合计算带来了障碍. 由于数据散落在不同的数据库.消息队列.文件系统中,计算平台如果直接访问这些数据,会遇到可访问性和数据传输延迟等问题.在一些场景下,计算平台直接访问应用系统数据库会对系统吞吐造成显…
上一个十年,以 Hadoop 为代表的大数据技术发展如火如荼,各种数据平台.数据湖.数据中台等产品和解决方案层出不穷,这些方案最常用的场景包括统一汇聚企业数据,并对这些离线数据进行分析洞察,来达到辅助决策或者辅助营销的目的,像传统的 BI 报表.数据大屏.标签画像等等. 但企业中除了这样的分析型业务(OLAP),还同时存在对数据实时性要求更高的交互型业务场景(OLTP 或 Operational Applications),例如电商行业常见的统一商品或订单查询.金融行业的实时风控.服务行业的客户…
Storm 实战:构建大数据实时计算(阿里巴巴集团技术丛书,大数据丛书.大型互联网公司大数据实时处理干货分享!来自淘宝一线技术团队的丰富实践,快速掌握Storm技术精髓!) 阿里巴巴集团数据平台事业部商家数据业务部 编著 ISBN 978-7-121-22649-6 2014年8月出版 定价:59.00元 184页 16开 编辑推荐 Storm以其简单.灵活.健壮而著称.随着大数据实时处理需求的强劲增长,Storm的出现填补了大数据处理生态系统的缺失,并被越来越多的公司所采用. <Storm实战…
使用Nginx+CppCMS构建高效Web应用服务器 1:Why当前,越来越多的网站使用了各种框架,大部分框架使用了脚本语言.半编译语言等.比如Java.Python.Php.C#.NET等.这些框架大部分目标是解决快速开发.运行稳定.但是,缺点是:系统庞大.运行耗费资源多.运行效率低下.占用带宽大等.本文提出一种新的Web应用解决方案,试图针对以上缺点进行优化. 完全使用静态页面,动态数据通过Ajax访问CppCMS提供的高效Rest服务由浏览器获取.这样,(1)CppCMS提供Rest服务.…
Delta Lake 是DataBricks公司推出的一种数据湖解决方案,Delta为该方案的核心组件.围绕数据流走向(数据入湖从流入数据湖.数据组织管理.数据查询到流出数据湖)推出了一系列功能特性, 协助您搭配第三方上下游工具,搭建快捷.易用.和安全的数据湖. 通常的数据湖方案是选取大数据存储引擎构建数据湖(例如阿里云OSS等对象产品或云下hdfs),然后将产生的各种类型数据存储在该存储引擎中.在使用数据时,通过Spark或Presto 对接数据分析引擎并进行数据解析. 应用场景:优点 Del…
1.概述 最近,有同学留言咨询Kafka连接器的相关内容,今天笔者给大家分享一下Kafka连接器建立数据管道的相关内容. 2.内容 Kafka连接器是一种用于Kafka系统和其他系统之间进行功能扩展.数据传输的工具.通过Kafka连接器能够简单.快速的将大量数据集移入到Kafka系统,或者从Kafka系统中移出,例如Kafka连接器可以低延时的将数据库或者应用服务器中的指标数据收集到Kafka系统主题中.另外,Kafka连接器可以通过作业导出的方式,将Kafka系统主题传输到二次存储和查询系统中…
前言 在当今每日信息量巨大的社会中,源源不断的数据需要被安全的存储.等到数据的规模越来越大的时候,也许瓶颈就来了,没有存储空间了.这时候怎么办,你也许会说,加机器解决,显然这是一个很简单直接但是又显得有些欠缺思考的办法.无谓的加机器只会带来无限上升的成本消耗,更好的办法应该是做到更加精细化的数据存储与管理,比如说非常典型的冷热数据的存储.对于巨大的长期无用的冷数据而言,应该用性能偏弱,但是磁盘空间富余的机器存,热数据则反之.数据的分类存储一定会带来数据的同步问题,假若我有2套集群,1个是线上的正…
在<流数据平台构建实战指南>第一部分中,Confluent联合创始人Jay Kreps介绍了如何构建一个公司范围的实时流数据中心.InfoQ前期对此进行过报道.本文是根据第二部分整理而成.在这一部分中,Jay给出了一些构建数据流平台的具体建议. 限制集群数量 Kafka集群数量越少,系统架构就越简单,也就意味着集成点更少,新增应用程序的增量成本更低,数据流推理更简单.但出于以下几个方面的考虑,再少也不可能只有一个集群: 将活动限制在本地数据中心.Jay建议将所有的应用程序都连接到本地数据中心的…