降阶公式/ARC173F】的更多相关文章

[问题2014A02] 解答三(降阶公式法) 将矩阵 \(A\) 写成如下形式: \[A=\begin{pmatrix} -2a_1 & 0 & \cdots & 0 & 0 \\ 0 & -2a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -2a_{n-1} &…
1.证明: 第三类分块初等变换是若干个第三类初等变换的复合. 特别地, 第三类分块初等变换不改变行列式的值. 2.设 $n\,(n\geq 2)$ 阶方阵 $A=(a_{ij}(x))$, 其中每个元素 $a_{ij}(x)$ 都是关于未定元 $x$ 的多项式. 若 $k$ 是正整数, 满足 $x^k$ 整除 $A$ 的所有代数余子式 $A_{ij}$, 证明: $x^{k+1}$ 整除 $A$ 的行列式 $|A|$. 提示  考虑 $A$ 的伴随矩阵 $A^*$ 的行列式. 另外, 本题还可以…
[问题2014A02]  求下列 \(n\) 阶行列式的值, 其中 \(a_i\neq 0\,(i=1,2,\cdots,n)\): \[ |A|=\begin{vmatrix} 0 & a_1+a_2 & \cdots & a_1+a_{n-1} & a_1+a_n \\ a_2+a_1 & 0 & \cdots & a_2+a_{n-1} & a_2+a_n \\ \vdots & \vdots & \vdots &…
[问题2014A04]  解答 (1) 由条件可得 \(AB+BA=0\), 即 \(AB=-BA\), 因此 \[AB=A^2B=A(AB)=A(-BA)=-(AB)A=-(-BA)A=BA^2=BA,\] 从而 \(AB=BA=0\). (2) 由条件可得 \(0=B(AB)^kA=(BA)^{k+1}\), 因此 \[(I_n-BA)\Big(I_n+BA+\cdots+(BA)^k\Big)=I_n,\] 从而 \(I_n-BA\) 可逆. (3) 我们给出此小题的三种解法. 解法一(凑…
[问题2014S05] 解答  (本解答由谷嵘同学提供) 首先, 由 \(\mathrm{tr}(AB)=\mathrm{tr}(BA)\) 可得 \(a=0\), 或者由 Cauchy-Binet 公式知 \(|AB|=0\), 从而可得 \(a=0\). 其次, 我们来证明一个一般的结论. 引理  设 \(A\) 为 \(n\times m\) 矩阵, \(B\) 为 \(m\times n\) 矩阵, 则对任意的非零常数 \(\lambda_0\) 均有 \[m-\mathrm{rank}…
一.期末考试成绩班级前十名 宁盛臻(100).朱民哲(92).徐钰伦(86).范凌虎(85).沈伊南(84).何陶然(84).丁知愚(83).焦思邈(83).董瀚泽(82).钱信(81) 二.总成绩计算方法 平时成绩根据交作业的次数决定,本学期共交作业13次,10次以上(包括10次)100分,少一次扣10分. 总成绩=平时成绩*20%+期中考试成绩*20%+期末考试成绩*60% 三.最终成绩及人数 最终成绩 人数 A 25 A- 10 B+ 35 B 16 B- 16 C+ 6 C 5 C- 2…
一.期末考试成绩班级前十五名 林晨(93).朱民哲(92).何陶然(91).徐钰伦(91).吴嘉诚(91).于鸿宝(91).宁盛臻(90).杨锦文(89).占文韬(88).章俊鑫(87).颜匡萱(87).王旭磊(87).王泽斌(87).沈伊南(86).李飞虎(86) 二.总成绩计算方法 平时成绩根据交作业的次数决定,本学期共交作业13次,10次以上(包括10次)100分,少一次扣10分. 总成绩=平时成绩*15%+期中考试成绩*15%+期末考试成绩*70% 三.最终成绩及人数 最终成绩 人数 A…
本学期的高等代数每周一题活动计划从第2教学周开始,到第15教学周结束,每周的周末公布一道思考题(共14道,思考题一般与下周授课内容密切相关),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代数在线课程19级课群”(以课群话题的形式)这两个渠道同时发布.有兴趣的同学可以将每周一题的解答写在纸上.拍成图片,并上传到每周一题对应的课群话题中.本人会定期对每周一题的解答进行批改和评价,并将优秀解答标记出来推荐给全班同学. [问题2019A01]  请用教材第1章“行列式”中…
[问题2015A01]  证明: 第三类分块初等变换是若干个第三类初等变换的复合. 特别地, 第三类分块初等变换不改变行列式的值. [问题2015A02]  设 $n\,(n\geq 2)$ 阶方阵 $A=(a_{ij}(x))$, 其中每个元素 $a_{ij}(x)$ 都是关于未定元 $x$ 的多项式. 若 $k$ 是正整数, 满足 $x^k$ 整除 $A$ 的所有代数余子式 $A_{ij}$, 证明: $x^{k+1}$ 整除 $A$ 的行列式 $|A|$. 提示  考虑 $A$ 的伴随矩阵…
WLW是写博客的利器,支持离线.格式排版等,而且拥有众多的插件.博客园推荐了代码插入插件,但是没有提供WLW的公式编译插件.目前我的一般做法是:先在Word下使用MathType编辑好公式,然后将公式复制到WLW的本文中,总感觉有点麻烦. 简单学习了WLW插件的开发,决定自己开发一个WLW代码插入插件.比较简单,按照以下步骤,大家可以开发属于自己的公式插入插件. 首先,开发公式插入插件涉及两方面内容.一方面是公式的编辑,一般采用Latex数学排版,为了解析LaTex函数,我们需要Latex解析链…