首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Storm中-Worker Executor Task的关系
】的更多相关文章
Storm中-Worker Executor Task的关系
Storm在集群上运行一个Topology时,主要通过以下3个实体来完成Topology的执行工作:1. Worker(进程)2. Executor(线程)3. Task 下图简要描述了这3者之间的关系: 注:supervisor.slots.ports:对于每个工作节点配置该节点可以运行多少个worker进程. 每个worker进程使用一个但单独的端口来收取消息,这里配置了哪个端口用来使用. 定义5个端口,那么该节点上允许最多运行5个worker进程. 默认情况下,可以在端口6700, 670…
storm源码之理解Storm中Worker、Executor、Task关系 + 并发度详解
本文导读: 1 Worker.Executor.task详解 2 配置拓扑的并发度 3 拓扑示例 4 动态配置拓扑并发度 Worker.Executor.Task详解: Storm在集群上运行一个Topology时,主要通过以下3个实体来完成Topology的执行工作:1. Worker Process(工作进程)——Spout/Bolt中运行具体处理逻辑的进程2. Executor(线程.执行器)——物理线程3. Task(任务)——具体的处理逻辑对象 下图简要描述了这3者之间的关系: sto…
storm中worker、executor、task之间的关系
这里做一些补充: worker是一个进程,由supervisor启动,并只负责处理一个topology,所以不会同时处理多个topology. executor是一个线程,由worker启动,是运行task的物理容器,其和task是1 -> N关系. component是对spout/bolt/acker的抽象. task也是对spout/bolt/acker的抽象,不过是计算了并行度之后.component和task是1 -> N 的关系. supervisor会定时从zookeeper获取…
Storm-源码分析- Component ,Executor ,Task之间关系
Component包含Executor(threads)的个数 在StormBase中的num-executors, 这对应于你写topology代码时, 为每个component指定的并发数(通过setBolt和setSpout) Component和Task的对应关系, (storm-task-info) 默认你可以不指定task数, 那么task和executor为1:1关系 当然也可以通过ComponentConfigurationDeclarer#setNumTasks()去设置T…
【原】storm源码之理解Storm中Worker、Executor、Task关系
Storm在集群上运行一个Topology时,主要通过以下3个实体来完成Topology的执行工作:1. Worker(进程)2. Executor(线程)3. Task 下图简要描述了这3者之间的关系: 1个worker进程执行的是1个topology的子集(注:不会出现1个worker为多个topology服务).1个worker进程会启动1个或多个executor线程来执行1个topology的component(spout或bolt).因此,1个运行中的topology就是由集群中多台物…
线上Storm的worker,executor,task参数调优篇
问题引入: 线上最近的数据量越来越大,出现了数据处理延迟的现象,观察storm ui的各项数据,发现有大量的spout失败的情况,如下: ---------------------------------------------------------------------------------------------------------------------------------------------------------------- 然后根据storm并发度的一些理论,进行…
Storm概念学习系列之Worker、Task、Executor三者之间的关系
不多说,直接上干货! Worker.Task.Executor三者之间的关系 Storm集群中的一个物理节点启动一个或者多个Worker进程,集群的Topology都是通过这些Worker进程运行的. 然而,Worker进程中又会运行一个或者多个Executor线程,每个Executor线程只运行一个Topology的一个组件(Spout或Bolt)的Task任务,Task又是数据处理的实体单元. Worker是进程,Executor对应于线程,Spout或Bolt是一个个的Task: 同一个W…
Storm概念学习系列之核心概念(Tuple、Spout、Blot、Stream、Stream Grouping、Worker、Task、Executor、Topology)(博主推荐)
不多说,直接上干货! 以下都是非常重要的storm概念知识. (Tuple元组数据载体 .Spout数据源.Blot消息处理者.Stream消息流 和 Stream Grouping 消息流组.Worker工作者进程.Task是最终运行spout或bolt中代码的执行单元.executor是worker进程启动的一个单独线程) 见博客 Storm概念学习系列之storm核心组件 Storm概念学习系列之Task任务 Storm概念学习系列之Tuple元组 Storm概念学习系列之Blot消息处理…
storm中几个概念的大小关系
从图可以看出来:topology>supervisor>worker>excutor>task; 也就是说一个topology可以运行在多个supervisor上,一个supervisor可以运行多个worker(进程),一个worker里面可以有多个excutor(线程),一个excutor可以运行多个task: 关于task的大小差不多可以理解为一个task实例一个bolt.task数默认是不设置的,默认和excutor数相同,也就是说一个excutor运行一个task,可以通…
Storm中遇到的日志多次重写问题(一)
业务描述: 统计从kafka spout中读取的数据条数,以及写入redis的数据的条数,写入hdfs的数据条数,写入kafaka的数据条数.并且每过5秒将数据按照json文件的形式写入日志.其中保存为json数据的格式为:时间戳 + 进程名称 + 读kafka数据条数 + 写入redis数据条数 + 写入hbase条数 + 写入kafka条数.time_stamp + process_name + from_kafka + to_redis + to_hdfs + to_kafka 给出实现的…