大脑中的神经元 我们的大脑都充满了上图所示的神经元,神经元有一个细胞体(cell body),还有一些input wires,专业词汇叫做树突(dendrite),它们从其它地方接收输入信息,神经元还有一个output wire,专业词汇叫做轴突(Axon),用来给其它的神经元发送信号.简单说来,神经元就是一个计算单元,它从input wires那儿接收输入,经过一些计算后,然后能过output wire(轴突)将输出传送给其它神经元. 大脑中的一系列神经元是如何交流的 神经元之间是通过小脉冲电…
4. Neural Networks (part one) Content: 4. Neural Networks (part one) 4.1 Non-linear Classification. 4.2 Neural Model(神经元模型) 4.3 Forward Propagation 4.4 神经网络实现与或非门以及异或门 4.4.1 实现与或非门(AND/OR/NOT) 4.4.2 实现异或/同或门(XOR/XNOR) 4.5 Multi-class classification k…
​ ​其中: 1.VGG 网络以及从 2012 年以来的 AlexNet 都遵循现在的基本卷积网络的原型布局:一系列卷积层.最大池化层和激活层,最后还有一些全连接的分类层. 2.ResNet 的作者将这些问题归结成了一个单一的假设:直接映射是难以学习的.而且他们提出了一种修正方法:不再学习从 x 到 H(x) 的基本映射关系,而是学习这两者之间的差异,也就是「残差(residual)」.然后,为了计算 H(x),我们只需要将这个残差加到输入上即可. 假设残差为 F(x)=H(x)-x,那么现在我…
一.卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 [1-2]  .卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift…
import numpy as np np.random.seed(1337) from keras.datasets import mnist from keras.models import Model from keras.layers import Dense, Input import matplotlib.pyplot as plt (x_train,y_train),(x_test,y_test) = mnist.load_data() x_train = x_train.asty…
word2vec 前世今生 2013年,Google开源了一款用于词向量计算的工具——word2vec,引起了工业界和学术界的关注.首先,word2vec可以在百万数量级的词典和上亿的数据集上进行高效地训练:其次,该工具得到的训练结果——词向量(word embedding),也是很多NLP任务的基础.随着深度学习(Deep Learning)在自然语言处理中应用的普及,很多人误以为word2vec是一种深度学习算法.其实,读了Mikolov在2013年发表的论文[1][2]就会知道,word2…
2013年,Google开源了一款用于词向量计算的工具--word2vec,引起了工业界和学术界的关注.首先,word2vec可以在百万数量级的词典和上亿的数据集上进行高效地训练:其次,该工具得到的训练结果--词向量(word embedding),可以很好地度量词与词之间的相似性.随着深度学习(Deep Learning)在自然语言处理中应用的普及,很多人误以为word2vec是一种深度学习算法.其实word2vec算法的背后是一个浅层神经网络.另外需要强调的一点是,word2vec是一个计算…
word2vec前世今生 2013年,Google开源了一款用于词向量计算的工具--word2vec,引起了工业界和学术界的关注.首先,word2vec可以在百万数量级的词典和上亿的数据集上进行高效地训练:其次,该工具得到的训练结果--词向量(word embedding),可以很好地度量词与词之间的相似性.随着深度学习(Deep Learning)在自然语言处理中应用的普及,很多人误以为word2vec是一种深度学习算法.其实word2vec算法的背后是一个浅层神经网络.另外需要强调的一点是,…
NLP中的Word2Vec讲解 word2vec是Google开源的一款用于词向量计算 的工具,可以很好的度量词与词之间的相似性: word2vec建模是指用CBoW模型或Skip-gram模型来计算不同 词语的向量(word vector) CBoW是给定上下文来预测输入词.Skip-gram给定输入词预测上下文,但最终都会得到词向量矩阵W 上图为词向量的部分可视化结构 Statistical Language Model (统计语言模型)  在深入word2vec之前,首先回顾下nlp中的一…
Word2Vec详解 word2vec可以在百万数量级的词典和上亿的数据集上进行高效地训练:其次,该工具得到的训练结果--词向量(word embedding),可以很好地度量词与词之间的相似性.随着深度学习(Deep Learning)在自然语言处理中应用的普及,很多人误以为word2vec是一种深度学习算法.其实word2vec算法的背后是一个浅层神经网络.另外需要强调的一点是,word2vec是一个计算word vector的开源工具.当我们在说word2vec算法或模型的时候,其实指的是…
SAS Annotated Output GLM   在使用SAS过程中,proc glm步输出离差平方和有4种算法,分别是SS1 SS2 SS3 SS4 下面文章介绍了其中SS3的具体计算步骤和例子. This page shows an example of analysis of variance run through a general linear model (glm) with footnotes explaining the output. The data were coll…
P133,这是第二次作业,考察多重线性回归.这个youtube频道真是精品,用R做统计.这里是R代码的总结. 连续变量和类别型变量总要分开讨论: 多重线性回归可以写成矩阵形式的一元一次回归:相当于把多变量当成列向量压缩一下:矩阵有着非常优美的简单的计算法则,大大简化了计算的复杂度: 在建多重线性回归模型时我们会遇到很多问题: 选哪些变量建模,一元的很简单,可以判断有无显著性,多元就复杂了,我们收集的很多变量可能和因变量之间没有关系,必须过滤: 哪些变量之间有相关性,必须把相关性考虑进模型: 如何…
转载自:http://blog.csdn.net/linuxcumt/article/details/8572746 1.假设随Tumor Size变化,预测病人的肿瘤是恶性(malignant)还是良性(benign)的情况. 给出8个数据如下: 2.假设进行linear regression得到的hypothesis线性方程如上图中粉线所示,则可以确定一个threshold:0.5进行predict y=1, if h(x)>=0.5 y=0, if  h(x)<0.5 即malignan…
朴素贝叶斯的假定条件:变量独立同分布 一般情况下,越复杂的系统,过拟合的可能性就越高,一般模型相对简单的话泛化能力会更好一点,增加隐层数可以降低网络误差(也有文献认为不一定能有效降低),提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合”的倾向, svm高斯核函数比线性核函数模型更复杂,容易过拟合 AdaBoost算法中不同的训练集是通过调整每个样本对应的权重来实现的.开始时,每个样本对应的权重是相同的,即其中n为样本个数,在此样本分布下训练出一弱分类器.对于分类错误的样本,加大…
Code Project精彩系列(转)   Code Project精彩系列(转)   Applications Crafting a C# forms Editor From scratch http://www.codeproject.com/csharp/SharpFormEditorDemo.asp 建立一个类似C#的环境, 实现控件拖拉,属性 Packet Capture and Analayzer 网络封包截获 http://www.codeproject.com/csharp/pa…
本文是讲述怎样使用word2vec的基础教程.文章比較基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python下载地址:http://radimrehurek.com/gensim/models/word2vec.html 1.简介 參考:<Word2vec的核心架构及其应用 · 熊富林.邓怡豪,唐晓晟 · 北邮2015年>           <Word2vec的工作原理及应用探究 · 周练 ·…
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightforward. In this module, we share best practices for applying machine learning in practice, and discuss the best ways to evaluate performance of the le…
在NLP(自然语言处理)领域,文本表示是第一步,也是很重要的一步,通俗来说就是把人类的语言符号转化为机器能够进行计算的数字,因为普通的文本语言机器是看不懂的,必须通过转化来表征对应文本.早期是基于规则的方法进行转化,而现代的方法是基于统计机器学习的方法. 数据决定了机器学习的上限,而算法只是尽可能逼近这个上限,在本文中数据指的就是文本表示,所以,弄懂文本表示的发展历程,对于NLP学习者来说是必不可少的.接下来开始我们的发展历程.文本表示分为离散表示和分布式表示: 1.离散表示 1.1 One-h…
复现极限模型 codenn 原理 其原理大致是将代码特征映射到一个向量,再将描述文字也映射到一个向量,将其cos距离作为loss训练. 对于代码特征,原论文提取了函数名.调用API序列和token集:对于描述文字,通常选取docstring(Python)或函数上方或内部注释(JavaScript).对于函数名.token集,会按照驼峰命名和下划线命名进一步划分成更小的词法单元,而API序列则保留不再分割. 所有的这些词素,对于有序的会使用RNN或其变种处理,再将RNN每一个词的输出进行池化:对…
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 学习笔记类似提纲,具体细节参照上文链接 一些前置的基础 随机数 tf.random uniform(shape()) 两个元素零向量 tf.zeros(shape=(2)) 2x2常量 tf.constant([1,2],[3,4]) 查看形状.类型.值 A.shape A.dtype A.numpy() 矩阵相加 tf.add(A,B) 矩阵相乘 tf.matmul(A,B) 自动求导机制  tf.G…
基于Ubuntu+Python+Tensorflow+Jupyter notebook搭建深度学习环境 前言一.环境准备环境介绍软件下载VMware下安装UbuntuUbuntu下Anaconda的安装二.Xshell远程连接Ubuntu系统三.Jupyter notebook服务器的配置及远程访问四.远程环境的测试Tensorflow软件库的安装简单爬虫数据可视化基于神经网络实现fashion_mnist图片的识别总结 前言 如今,人工智能.深度学习等高深知识逐渐融入大家的视野,小大验证码的识…
磐创智能-专注机器学习深度学习的教程网站 http://panchuang.net/ 磐创AI-智能客服,聊天机器人,推荐系统 http://panchuangai.com/ 目录: 循环神经网络的应用 文本分类 序列标注 机器翻译 Attention-based model RNN系列总结 循环神经网络的应用 目前循环神经网络已经被应用在了很多领域,诸如语音识别(ASR).语音合成(TTS).聊天机器人.机器翻译等,近两年在自然语言处理的分词.词性标注等工作的研究中,也不乏循环神经网络的身影.…
在学习了python中的一些机器学习的相关模块后,再一次开始了深度学习之旅.不过与上次的TensorFlow框架不同,这一次接触的是fast.ai这样一个东西.这个框架还不稳定,网上也没有相关的中文文档.唯一一个学习站点就是 fastai 这样一个论坛,另外就是里面的公开课程. 性别识别模型使用体验: http://www.ctsch.cn/?page_id=11 请确认上传的图片中有人,否则对于其他类型的图片,也就当男女论处,目前在它的世界中只有男女. 附上fastai项目的相关连接: Git…
原文 http://blog.csdn.net/abcjennifer/article/details/7758797 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
原文 http://blog.csdn.net/abcjennifer/article/details/7749309 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
注意:绘画太难了,因为他们画,本文中的所有插图来自基本算法饺子机类.请勿转载 1.习模型: 事实上,基本上全部的基本机器学习模型都能够概括为下面的特征:依据某个函数,将输入计算并输出. 图形化表示为下图: 当我们的g(h)为sigmoid函数时候,它就是一个逻辑回归的分类器.当g(h)是一个仅仅能取0或1值的函数时,它就是一个感知机.那么问题来了,这一类模型有明显缺陷:当模型线性不可分的时候.或者所选取得特征不完备(或者不够准确)的时候.上述分类器效果并非特别喜人. 例如以下例: 我们能够非常轻…
上面只显示代码. 详BP原理和神经网络的相关知识,请参阅:神经网络和反向传播算法推导 首先是前向传播的计算: 输入: 首先为正整数 n.m.p.t,分别代表特征个数.训练样本个数.隐藏层神经元个数.输出 层神经元个数. 当中(1<n<=100,1<m<=1000, 1<p<=100, 1<t<=10). 随后为 m 行,每行有 n+1 个整数.每行代表一个样本中的 n 个特征值 (x 1 , x 2 ,..., x n ) 与样本的 实际观測结果 y.特征值…
目录 线性回归,逻辑回归,神经网络,SVM的总结 线性回归,逻辑回归,神经网络,SVM的总结 详细的学习笔记. markdown的公式编辑手册. 回归的含义: 回归就是指根据之前的数据预测一个准确的输出值. 分类的含义: 分类就是预测离散的输出值, 比如男生为1, 女生为0(0/1离散输出问题). 机器学习中往往会有一个假设(hypothesis), 本质上来讲\(h\)代表学习算法的解决方案或函数. \(h\)可以理解为是我们预先选定的规则或者函数的形式,我们需要不停地得到对应的参数. \(h…
neural networks 神经网络activation function 激活函数hyperbolic tangent 双曲正切函数bias units 偏置项activation 激活值forward propagation 前向传播feedforward neural network 前馈神经网络 反向传播算法 Backpropagation Algorithm(批量)梯度下降法 (batch) gradient descent(整体)代价函数 (overall) cost funct…
Hinton“深度学习之父”和“神经网络先驱”,新论文Capsule将推翻自己积累了30年的学术成果时 在论文中,Capsule被Hinton大神定义为这样一组神经元:其活动向量所表示的是特定实体类型的实例化参数.他的实验表明,鉴别式训练的多层Capsule系统,在MNIST手写数据集上表现出目前最先进的性能,并且在识别高度重叠数字的效果要远好于CNN. 该论文无疑将是今年12月初NIPS大会的重头戏. 一个月前,在多伦多接受媒体采访时,Hinton大神断然宣称要放弃反向传播,让整个人工智能从头…