HDU 1930 CRT】的更多相关文章

也是很模板的一道题,给出一些数,分割,模数固定是4个互质的. /** @Date : 2017-09-16 23:54:51 * @FileName: HDU 1930 CRT.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #include <bits/stdc++.h> #define LL long…
CRT模板题 /** @Date : 2017-09-15 13:52:21 * @FileName: HDU 1573 CRT EXGCD.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #include <bits/stdc++.h> #define LL long long #define PII p…
2976: [Poi2002]出圈游戏 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2976 Description Input 中第一行有一个正整数n, 2 <= n <= 20,第二行有n 个整数其中第i个整数表示编号为i 的小朋友第i个出圈. Output 求最小的K,如果不存在,则输出一个单词"NO" Sample Input 4 1 4 2 3 Sample Output 5 Hint 题意 题解:…
2891 -- Strange Way to Express Integers import java.math.BigInteger; import java.util.Scanner; public class Main { static final BigInteger ZERO = new BigInteger("0"); static final BigInteger ONE = new BigInteger("1"); static BigInteger…
Unknown Treasure Problem Description On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure…
[SinGuLaRiTy-1020] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. [CQBZOJ 1464] Hankson 题目描述 Hanks博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数c1和c2的最大公约数和最小公倍数.现在Hankson认为自己已经熟练地掌握了这些知识,他开始思考一个“…
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5768 [题目大意] 求出一个区间内7的倍数中,对于每个ai取模不等于bi的数的个数. [题解] 首先,对于x mod 7=0,和选取的一些x mod ai=bi,我们可以利用CRT解出最小的x值,那么这样子我们就可以对所有的aibi选取方式做容斥,得到x mod 7=0成立且所有x mod ai=bi不成立的x的个数.也就是答案. [代码] #include <cstdio> #include…
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5446 [题目大意] 给出一个合数M的每一个质因子,同时给出n,m,求C(n,m)%M. [题解] 首先我们可以用Lucas定理求出对答案对每个质因子的模,然后我们发现只要求解这个同余方程组就可以得到答案,所以我们用中国剩余定理解决剩下的问题. [代码] #include <cstdio> #include <cstring> #include <algorithm> u…
http://acm.hdu.edu.cn/showproblem.php?pid=5446 题意:题目意思很简单,要你求C(n,m)mod p的值 p=p1*p2*...pn; 题解:对于C(n,m)mod p 由于n,m的值很大 我们用lucas定理把n,m的范围缩小.由于模数是由若干个素数的乘积组成,那么对于最终要求的解x,我们可以用中国剩余定理求解.中国剩余定理如下: 设正整数两两互素,则同余方程组 有整数解.并且在模下的解是唯一的,解为 其中,而为模的逆元. 最后说一点,由于数据的范围…
Unknown Treasure Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5446 Description On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician ent…