TensorFlow保存和载入模型】的更多相关文章

首先定义一个tf.train.Saver类: saver = tf.train.Saver(max_to_keep=1) 其中,max_to_keep参数设定只保存最后一个参数,默认值是5,即保存最后5个模型,如果设置成0,训练过程中的所有模型都会被保存. 模型训练好以后,保存模型: saver.save(sess, ckpt_dir + "/nn_model.ckpt", global_step=1) 其中,sess是Session,ckpt_dir + "/nn_mode…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/8108466.html 参考网址: http://pytorch.org/docs/master/notes/serialization.html https://github.com/clcarwin/sphereface_pytorch 有两种方式保存和载入模型 1. 只保存和载入模型参数 保存: torch.save(the_model.state_dict(), PATH) 载入: the_m…
本节涉及点: 保存训练过程 载入保存的训练过程并继续训练 通过命令行参数控制是否强制重新开始训练 训练过程中的手动保存 保存训练过程前,程序征得同意 一.保存训练过程 以下方代码为例: import tensorflow as tf import random random.seed() x = tf.placeholder(tf.float32) yTrain = tf.placeholder(tf.float32) w1 = tf.Variable(tf.random_normal([4,…
在我们使用TensorFlow的时候,有时候需要训练一个比较复杂的网络,比如后面的AlexNet,ResNet,GoogleNet等等,由于训练这些网络花费的时间比较长,因此我们需要保存模型的参数. 编程基础案例中主要讲解模型的保存和恢复,以及使用几个案例使我们更好的理解这一块内容. 一 保存和载入模型 1.保存模型 首先需要建立一个saver,然后在session中通过saver的save即可将模型保存起来,代码如下: ''' 1.保存模型 ''' ''' 这里是各种构建模型graph的操作,…
摘要:这篇文章将讲解TensorFlow如何保存变量和神经网络参数,通过Saver保存神经网络,再通过Restore调用训练好的神经网络. 本文分享自华为云社区<[Python人工智能] 十一.Tensorflow如何保存神经网络参数 丨[百变AI秀]>,作者: eastmount. 一.保存变量 通过tf.Variable()定义权重和偏置变量,然后调用tf.train.Saver()存储变量,将数据保存至本地"my_net/save_net.ckpt"文件中. # -*…
『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 参数名称 功能说明 默认值 var_list Saver中存储变量集合 全局变量集合 reshape 加载时是否恢复变量形状 True sharded 是否将变量轮循放在所有设备上 True max_to_keep 保留最近检查点个数 5 restore_sequentially 是否按顺序恢复变量,模型…
一:保存 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次100张照片 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次100张照片 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size #定义两…
参考学习博客: # https://www.cnblogs.com/felixwang2/p/9190692.html 一.模型保存 # https://www.cnblogs.com/felixwang2/p/9190692.html # TensorFlow(十三):模型的保存与载入 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 载入数据集 mnist = input_…
首先是模型参数和网络结构的保存 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #每个批次的大小 batch_size = 100 n_batch = mnist.train._num_examples // batch_size…