补坑补坑.. 其实挺不理解孙爷为什么把这两个东西放在一起讲..当时我学这一块数据结构都学了一周左右吧(超虚的) 也许孙爷以为我们是省队集训班... 好吧,虽然如此,我还是会认真写博客(保证初学者不会出现看不懂的情况啦,如果有的话可以在博客下方留言QAQ,我会尽量解答的..) 首先先讲一下倍增: 倍增的思想是这样的: 比如我们知道a[1]->a[2],a[2]->a[3],a[3]->a[4]这样的关系 那么我们如果按照普通的方法通过a[1]->a[4]的话,那么我们要将所有的情况遍…
树的直径: 利用了树的直径的一个性质:距某个点最远的叶子节点一定是树的某一条直径的端点. 先从任意一顶点a出发,bfs找到离它最远的一个叶子顶点b,然后再从b出发bfs找到离b最远的顶点c,那么b和c之间的距离就是树的直径. 用dfs也可以. 模板: ; int head[N]; int dis[N]; bool vis[N]; ,b,mxn=; struct edge { int to,w,next; }edge[N]; void add_edge(int u,int v,int w) { e…
题目 Codeforces827D 分析 倍增神题--(感谢T*C神犇给我讲qwq) 这道题需要考虑最小生成树的性质.首先随便求出一棵最小生成树,把树边和非树边分开处理. 首先,对于非树边\((u,v)\)(表示一条两端点为\(u\)和\(v\)的边,下同).考虑Kruskal算法的过程,它必定成为树边的充要条件是它的权值小于树上\(u\)到\(v\)之间的路径上的某条边\(e\),这样就会选中这条边来连接\(u\)和\(v\)所在的连通块而不是选中\(e\).因此,非树边的答案就是它两端点之间…
方法1:倍增 1498ms #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include <cmath> using namespace std; typedef long long ll; ; inline int read(){ ,f=; ;c=getchar();} +c-';c=getchar();} return x*f; }…
4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6163  Solved: 2025[Submit][Status][Discuss] Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有…
4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4352  Solved: 1387[Submit][Status][Discuss] Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有…
题目传送门 题目大意: 有一棵点数为 N 的树,以点 1 为根,且树点有权.然后有 M 个操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有点的点权和.   思路: 由于是在刷dfs序专题的时候碰到这题,所以思路被限制了,没想树链剖分的东西,没能做出来,后来发现了一个 大佬的博客,发现也是可以做的,但是这个做法看不懂...留坑 现在用树链剖分的方法,每个点的权值就是点…
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4034 题意概括 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有点的点权和. 题解 树链剖分. 然后对于子树修改,我们可以考虑dfs序. 树链剖分也是一种dfs序. 单点修改更简单,对于懒惰的我来…
补坑咯~ 今天围绕的是一个神奇的数据结构:线段树.(感觉叫做区间树也挺科学的.) 线段树,顾名思义就是用来查找一段区间内的最大值,最小值,区间和等等元素. 那么这个线段树有什么优势呢? 比如我们要多次查询1-n中的最大值,那么我们如果使用暴力来查找,那么我们每次查找的复杂度就是O(n) 但是如果我们把一个个区间变成树上的一个个点,并且我们严格保证树的深度,那么我们每次查找的复杂度就是O(logn) 这样就能让查询变得更快. 我们先简单讲一下线段树的存储(图中的标号就是线段树数组标号) 这就是线段…
这个题就是一道树链剖分的裸题,但是需要有一个魔性操作___编号数组需要开longlong!!!震惊!真的神奇. 题干: 题目描述 有一棵点数为 N 的树,以点 为根,且树点有边权.然后有 M 个操作,分为三种:操作 :把某个节点 x 的点权增加 a .操作 :把某个节点 x 为根的子树中所有点的点权都增加 a .操作 :询问某个节点 x 到根的路径中所有点的点权和. 输入输出格式 输入格式: 第一行包含两个整数 N, M .表示点数和操作数.接下来一行 N 个整数,表示树中节点的初始权值.接下来…